Hedging Basket Credit Derivative Claims: A Local Risk-Minimization Approach

Youssef Elouerkhaoui

June 29, 2005
Outline

• Motivation

• The Model

• Marked Point Process Representation

• Equivalent Local Martingale Measures

• The Minimal Martingale Measure

• Martingale Representation

• Computing the Hedging Strategy: Main Result
Motivation

- Basket credit derivatives have seen an exponential growth over the last few years especially with the emergence of standard indices such as iTraxx and CDX.

- The main credit derivative structures are: Credit Default Swaps, First-To-Default Swaps, Collateralized Debt Obligations.

- FTDs and CDOs are correlation products, their value depends on the likelihood of multiple defaults. They are usually hedged with single-name CDS.

- Correlation risk introduces a market incompleteness. To address this problem, we use a local-risk minimization approach.

- Bi-modal nature of credit distributions means that we need to hedge spread risk and default risk.
Credit Derivatives

- **Credit Default Swap**: is a bilateral agreement whereby the protection buyer makes a series of premium payments until the maturity of the trade or default, depending on which occurs first. In return, he receives a protection against the default of the reference entity. In the event of default, the protection seller makes a payment equal to the difference between the face value of the obligation and its recovery value after default.

- **First-To-Default Swap**: is a default swap where the protection seller takes on exposure to the first entity suffering a credit event within a basket. Similarly, we can have second-to-default swaps, third-to-default swaps, and so forth.

- **CDO (or first loss swap)**: is a default swap where the protection seller commits to cover all the losses incurred on a portfolio within a pre-defined range. In return, the protection buyer pays a periodic premium on a notional that amortizes with losses on the portfolio.

Definition 1 A copula function is the multivariate distribution function of \(n \) random variables uniformly distributed on \([0, 1]\).

Theorem 2 (Sklar (1959)) For \(n \) random variables \((X_1, ..., X_n)\) with marginal distribution functions \((F_1, ..., F_n)\) and joint distribution function \(F\), there exists an \(n \)-dimensional copula \(C\) such that for all \((x_1, x_2, ..., x_n) \in \mathbb{R}^n\),

\[
F(x_1, x_2, ..., x_n) = C(F_1(x_1), F_2(x_2), ..., F_n(x_n))
\]

if \(F_1, F_2, ..., F_n\) are continuous, then \(C\) is unique.

- **Examples:**
 - Gaussian Copula / T-Copula.
 - Marshall-Olkin Copula.
Marshall-Olkin Copula

- The Marshall-Olkin copula was traditionally used in reliability theory to model the failure rate in multi-component systems. The failure of each component is assumed to be contingent on some independent Poisson shocks.

- This is also known as a multivariate Poisson model or a Poisson shock model.

- It was first used in the context of basket credit derivatives pricing in Duffie (1998), then in Duffie and Garleanu (2001).

- It has a number of useful analytical results for the aggregate portfolio distribution (see Lindskog and McNeil (2003)).
Quadratic Hedging Approaches

- **Complete Market**: perfect replication by self-financing strategies.

- **Incomplete Market**:
 - **Local Risk Minimization**: allow mean self-financing strategies and minimize the “Expected Additional Cost”
 \[
 r_t(\varphi) = \mathbb{E} \left[\left(C_{t+1}(\varphi) - C_t(\varphi) \right)^2 \mid G_t \right],
 \]
 The value process of a local risk-minimizing strategy is given by
 \[
 V_t^H = \mathbb{E} [H \mid G_t],
 \]
 where \(\mathbb{E} [\cdot \mid G_t] \) is the conditional expectation operator under the **Minimal Martingale Measure** \(\hat{P} \).
 - **Mean Variance Hedging**: keep the self-financing property and give-up the perfect replication
 find \(V_0 \in \mathbb{R} \) and \(\alpha \in \Theta \) such that \(\mathbb{E} \left[(V_0 + G_T(\alpha) - H)^2 \right] \) is minimal.
The Model (1)

We work in an economy represented by a probability space \((\Omega, \mathcal{G}, P)\) and a time horizon \(T^* \in (0, \infty)\), on which is given a \(d\)-dimensional Brownian motion \(W\), and a set of \(n\) non-negative random variables \((\tau_1, \ldots, \tau_n)\) representing the default times of the obligors in the economy.

We introduce an \(\mathbb{R}^d\)-valued Itô process \(X_t\), describing the evolution of the state-variables in the economy, which solves the following SDE

\[
dX_t = \alpha(X_t)\,dt + \beta(X_t)\,dW_t,
\]

for some continuous functions \(\alpha_k : \mathbb{R}^d \to \mathbb{R}\) and \(\beta_{kj} : \mathbb{R}^d \to \mathbb{R}^d\), \(1 \leq k \leq d, 1 \leq j \leq d\).

We denote by \(\{\mathcal{F}_t\}_{0 \leq t \leq T^*}\) the filtration generated by \(X\) and augmented with the \(P\)-null sets of \(\mathcal{G}\):

\[
\mathcal{F}_t = \sigma(X_s : 0 \leq s \leq t) \vee \mathcal{N}.
\]
The Model (2)

We introduce, for each obligor i, the right-continuous process $D_t^i \triangleq 1_{\{\tau_i \leq t\}}$ indicating whether the firm has defaulted or not. We denote by $\{\mathcal{H}_t^i\}$ the filtration generated by this process

$$\mathcal{H}_t^i \triangleq \mathcal{F}_t^{D_t^i} = \sigma \left(D_s^i : 0 \leq s \leq t \right).$$

The agents’ filtration is the one generated by the economic state variables and the default processes

$$G_t \triangleq \mathcal{F}_t \vee \left[\bigvee_{i=1}^n \mathcal{H}_t^i \right].$$

Assumption. We assume that the default times are correlated and we allow for multiple instantaneous joint defaults. The multivariate dependence is defined by a Marshall-Olkin copula.
There exists a set of m independent Cox processes $N_{t}^{c_{j}}$ with continuous bounded intensities $\lambda^{c_{j}}(X_{t})$, which can trigger simultaneous defaults.

Conditional on a trigger event of type c_{j}, at time $\theta_{r}^{c_{j}}$, we draw an independent Bernoulli variable $A_{r}^{i,j}$ with a given probability $p^{i,j} \in [0,1]$, indicating if obligor i has defaulted or not.

The process N_{t}^{i} defined as

$$N_{t}^{i} \triangleq \sum_{j=1}^{m} \sum_{\theta_{r}^{c_{j}} \leq t} A_{r}^{i,j},$$

is also a Cox process with intensity

$$\lambda^{i}(X_{t}) = \sum_{j=1}^{m} p^{i,j} \lambda^{c_{j}}(X_{t}).$$
The default time τ_i is defined as the first jump time of the Cox process N_t^i:

$$\tau_i = \inf \{ t : N_t^i > 0 \}.$$

This can be formally described by the following SDE

$$dD_t^i = (1 - D_t^i) \sum_{j=1}^{m} A_{t}^{i,j} dN_t^{c_j}.$$

The Marshall-Olkin filtration is much larger than the one accessible to the agents. It contains the evolution of the common trigger events and the “conditional” Bernoulli events:

$$\tilde{G}_t = \mathcal{F}_t \vee \left[\bigvee_{j=1}^{m} \mathcal{F}_t^{N_{c_j}} \right] \vee \left[\bigvee_{j=1}^{m} \bigvee_{i=1}^{n} \mathcal{F}_t^{A_{t}^{i,j}} \right].$$
In our economy, we assume that we have \((n + 1)\) primary assets available for hedging with price processes \(S^i_t = \left(S^i_t\right)_{0 \leq t \leq T^*}\).

The first asset \(S^0\) is the money-market account, i.e., \(S^0_t = \exp\left(\int_0^t r_s ds\right)\). It will be used as numeraire, and all quantities will be expressed in units of \(S^0\).

We shall consider zero-coupon credit derivatives or contingent claims of the European type.

The hedging assets. \(S^i\) will represent the zero-coupon defaultable bond maturing at \(T\) linked to obligor \(i\); i.e., it pays 1 if obligor \(i\) survives until time \(T\), or 0 otherwise. The payoff at maturity is defined as:

\[
S^i_T \triangleq 1 - D^i_T.
\]
In practice, zero-coupon defaultable bonds are not traded in the market. They can, however, be extracted from the prices of liquid default swap instruments with different maturities.

Definition. A contingent claim is a \mathcal{G}_T-measurable random variable H_T describing the payoff at maturity T of a financial instrument.

Example 1. The payoff of a k^{th}-to-default (zero-coupon note) maturing at T is defined as:

$$
H_T^{(k)} \triangleq 1_{\left\{ \sum_{i=1}^n D_i T < k \right\}},
$$

it will pay 1 if there are less than k defaults in the basket or 0 otherwise. The most common structure in this category is a first-to-default, $H_T^{(1)}$, which pays 1 if no obligor in the basket defaults before T.

Example 2. Assuming that the recovery rate for obligor i is a constant proportion $R^i \in [0, 1)$, the payoff of a CDO (zero-coupon note) covering the portfolio losses, which fall in some range $[K_1, K_2]$, where $0 \leq K_1 < K_2 \leq 1$, is

$$H^{(K_1,K_2)}_T = \frac{1}{K_2 - K_1} \max \left(\min \left(\sum_{i=1}^{n} \left(1 - R^i\right) D^i_T - K_1, 0 \right), K_2 - K_1 \right).$$

We shall consider the problem of pricing and hedging zero-coupon contingent claims by dynamically trading the hedging assets S. The contingent claims, in this context, include credit derivatives of the basket type.
The Problem (4)

As shown in Föllmer and Schweizer (1991), for non-attainable claims, a locally risk-minimizing strategy is characterized by: (a) its cost process must be a martingale, (b) the cost process is orthogonal to M^S the martingale part of the price process S.

This is equivalent to having the following decomposition

$$H_T = H_0 + \int_{0,t}^1 (\alpha_t^{HT})^{tr} dS_t + L_t^{HT},$$

where L_t^{HT} is a martingale orthogonal to M^S. This is known as the Föllmer-Schweizer decomposition.

Our goal is to find an analytical result for (α_t^{HT}).
The Equivalent Fatal Shock Model (1)

We use the “Equivalent Fatal Shock Model” (see Lindskog and McNeil (2003)) as a tool to equivalently describe the Marshall-Olkin model. This provides an explicit representation of the marked point process, which will be used throughout.

Let \(\Pi_n \) be the set of all subsets of \(\{1, \ldots, n\} \). For each \(\pi \in \Pi_n \), we introduce the point process \(N^\pi_t \), which counts the number of shocks in \((0, t] \) resulting in joint defaults of the obligors in \(\pi \) only:

\[
N^\pi_t = \sum_{j=1}^{m} \sum_{r=1}^{c_j} A^{\pi,j}_{c_j} A^i_{\theta r},
\]

where

\[
A^{\pi,j}_{c_j} = \prod_{i \in \pi} A^i_{t} \prod_{i \notin \pi} (1 - A^i_{t}).
\]

We have the key result of the fatal shock representation (see Proposition 4 in Lindskog and McNeil (2003)).
The Equivalent Fatal Shock Model (2)

Proposition 3 (Fatal shock representation). \((N^\pi)_{\pi \in \Pi_n}\) are independent Cox processes, with intensities

\[
\lambda^\pi (X_t) = \sum_{j=1}^m p^{\pi,j} \lambda^{c_j} (X_t),
\]

where \(p^{\pi,j} = \prod_{i \in \pi} p^{i,j} \prod_{i \notin \pi} (1 - p^{i,j}).\)

Furthermore, we define the random time \(\tau^\pi\) as the first jump time of the Cox process \(N^\pi:\)

\[
\tau^\pi = \inf \{t \geq 0 : N^\pi_t > 0\},
\]

the default process \(D^\pi_t = 1_{\{\tau^\pi \leq t\}}\), and the filtration

\[
\mathcal{H}^\pi_t = \mathcal{F}^{D^\pi}_t = \sigma (D^\pi_s : 0 \leq s \leq t).
\]

For \(\pi \in \Pi_n\), the stopped process \(M^\pi_t \triangleq D^\pi_t - \int_0^{t \wedge \tau^\pi} \lambda^\pi (X_s) \, ds\) is a \((P, \{\mathcal{G}_t\})\)-martingale.
The Equivalent Fatal Shock Model (3)

Lemma 4 (Relationship between filtrations). We have

\[\bigvee_{i=1}^{n} \mathcal{H}_t^i \subset \bigvee_{\pi \in \Pi_n} \mathcal{H}_t^\pi. \]

Lemma 5 (Obligor description using the fatal shock representation).

1. The Cox process \(N_t^i \) is given by

\[N_t^i = \sum_{\pi \in \Pi_n} 1\{i \in \pi\} N_t^\pi, \]

and its intensity is

\[\lambda^i (X_t) = \sum_{\pi \in \Pi_n} 1\{i \in \pi\} \lambda^\pi (X_t). \]

2. The default time \(\tau_i \) is given by

\[\tau_i = \min \{\tau^\pi : \pi \in \Pi_n, i \in \pi\}. \]
The Marked Point Process Representation (1)

The Marshall-Olkin model is defined on the filtration \(\{ \tilde{G}_t \} \), which is larger than the one available to investors, namely \(\{ G_t \} \).

We shall use the generic tools of the MO model, however the local characteristics of the MPP representation are derived for the \(\{ G_t \} \) filtration.

We define the sequence of ordered default times \((T_0, T_1, ..., T_n) : T_0 = 0 \leq T_1 \leq ... \leq T_n\), and identities of the defaulted obligors as:

\[
\begin{align*}
T_0 &= 0, \ Z_0 = \emptyset; \\
T_k &= \min \{ \tau_i : 1 \leq i \leq n, \ \tau_i > T_{k-1} \} ; \\
Z_k &= \pi \text{ if } T_k = \tau_i \text{ for all } i \in \pi, \text{ and } \pi \in \Pi_n ;
\end{align*}
\]

The mark space of this point process is \(E \triangleq \Pi_n \), the set of all subsets of \(\{1,...,n\} \).
The Marked Point Process Representation (2)

The sequence \((T_k, Z_k)_{k \geq 1} \) defines a MPP with couting measure

\[
\mu(\omega, dt \times dz) : (\Omega, \mathcal{G}) \rightarrow ((0, \infty) \times E, (0, \infty) \otimes \mathcal{E}),
\]

\[
\int_0^t \int_E H(\omega, t, z) \mu(\omega, dt \times dz) = \sum_{k \geq 1} H(\omega, T_k(\omega), Z_k(\omega)) \mathbf{1}_{\{T_k(\omega) \leq t\}},
\]

and \((P, \{\mathcal{G}_t\})\)-intensity kernel

\[
\lambda_t(\omega, dz) dt = \lambda_t(\omega) \Phi_t(\omega, dz) dt,
\]

where \(\lambda_t \) is the non-negative \(\{\mathcal{G}_t\} \)-predictable process

\[
\lambda_t = \sum_{\pi \in \Pi_n} \mathbb{E} \left[1 - D_t^{\pi} | \mathcal{G}_t \right] \lambda^{\pi}(X_t),
\]

and \(\Phi_t(\omega, dz) \) is the probability transition kernel from \((\Omega \times [0, \infty), \mathcal{G} \otimes B_+)\) into \((E, \mathcal{E})\)

\[
\Phi_t(\omega, \pi) = \frac{\mathbb{E} \left[1 - D_t^{\pi} | \mathcal{G}_t \right] \lambda^{\pi}(X_t)}{\lambda_t}, \text{ for } \pi \in \Pi_n,
\]

with \(\Phi_t(.) = 0 \) if \(\lambda_t = 0. \) \((\lambda_t, \Phi_t(dz))\) are the \((P, \{\mathcal{G}_t\})\)-local characteristics of \(\mu(dt \times dz) \).
The Marked Point Process Representation (3)

For $1 \leq i \leq n$, the compensated point process M^i_t is given by

$$M^i_t = \int_0^t \int_E 1_{\{i \in z\}} (\mu (dt \times dz) - \lambda_t (dz) \, dt),$$

which can be written as

$$M^i_t = \sum_{\pi \in \Pi_n} 1_{\{i \in z\}} M^\pi_t |\{G_t\}$$

where $M^\pi_t |\{G_t\}$ is the $\{G_t\}$-adapted version of the compensated point process M^π:

$$M^\pi_t |\{G_t\} \triangleq \mathbb{E} [D_t^\pi |G_t] - \int_0^t \mathbb{E} [1 - D_s^\pi |G_s] \lambda^\pi (X_s) \, ds.$$

This MPP representation makes formal the idea that the mark space of the default times $(\tau_1, .., \tau_n)$ is Π_n since joint defaults are allowed. Here, we have fixed the mark space, but as default events occur, we put zero probability mass for the states of Π_n, which cannot occur anymore.
Equivalent Local Martingale Measures (1)

Assumption. We assume that the dynamics of the zero-coupon defaultable bonds, under P, are given by

$$dS^i_t = S^i_t \left(\mu^i_t dt + (\sigma^i_t)^{tr} dW_t - dM^i_t \right),$$

where μ^i_t and σ^i_t are $\{G_t\}$-predictable processes, uniformly bounded in t and ω, and regular enough to ensure that the prices S^i_t are bounded for almost all $\omega \in \Omega$.

Assumption. We assume that the single name assets are not redundant.

No arbitrage. There are no arbitrage opportunities if and only if there exists a probability measure Q equivalent to P under which the (discounted) security prices S are local martingales.

To classify the equivalent probability measures, we use the following Girsanov transformation (see Jacod and Shiryaev (1987)).
Theorem 6 Let \(\theta \) be a \(d \)-dimensional \(\{G_t\} \)-predictable process and let \(\phi(t, z) \) be a \(\{G_t\} \)-predictable \(E \)-indexed nonnegative process such that:

\[
\int_0^t \|\theta_s\|^2 \, ds < \infty, \quad \int_0^t \int_E |\phi(s, z)| \lambda_s(dz) \, ds < \infty,
\]

for finite \(t \). Define the process \(L \) by

\[
dL_t = L_t - \left(\sum_{k=1}^d \theta_t^k dW_t^k + \int_E (\phi(s, z) - 1) (\mu(dt \times dz) - \lambda_t(dz) \, dt) \right),
\]

and \(L_0 = 1 \). Suppose that \(E^P[L_t] = 1 \), for all finite \(t \). Then, there exists a probability measure \(Q \) equivalent to \(P \) such that

1. we have \(dW_t = \theta_t dt + \tilde{W}_t \), where \(\tilde{W} \) is a \(d \)-dimensional Brownian motion under \(Q \);

2. the counting measure \(\mu(dt \times dz) \) has a \((Q, \{G_t\}) \)-intensity kernel given by

\[
\tilde{\lambda}_t(dz) \, dt = \phi(t, z) \lambda_t(dz) \, dt.
\]
Equivalent Local Martingale Measures (3)

Every probability measure Q locally equivalent to P has the same structure as described above.

We restrict our set of ELMMs to the ones constructed with:

1. θ is a d-dimensional $\{\mathcal{F}_t\}$-predictable process;

2. the E-indexed $\{G_t\}$-predictable process $\phi(t, z)$ takes the form

 \[\phi(t, \pi) = \phi^\pi(X_t), \text{ for } \pi \in \Pi_n, \]

 where $(\phi^\pi)_{\pi \in \Pi_n}$ is a set of strictly positive continuous bounded functions $\phi^\pi : \mathbb{R}^d \to \mathbb{R}_+$.

This allows us to preserve the Cox-process assumptions under the change of measure Q; in other words, the intensities are still driven by the d-dimensional Itô process X.

24
The dynamics of the zero-coupon defaultable bonds under the equivalent probability measure Q are given by

$$dS^i_t = S^i_{t-} \left(\tilde{\mu}^i_t dt + (\sigma^i_t)^{tr} d\tilde{W}_t - \int_E \mathbf{1}_{\{i \in z\}} \left(\mu (dt \times dz) - \tilde{\lambda}_t (dz) dt \right) \right),$$

where

$$\tilde{\mu}^i_t = \mu^i_t + (\sigma^i_t)^{tr} \theta_t - \int_E \mathbf{1}_{\{i \in z\}} (\phi(t, z) - 1) \lambda_t (dz)$$

$$= \mu^i_t + (\sigma^i_t)^{tr} \theta_t - \sum_{\pi \in \Pi_n} \mathbf{1}_{\{i \in \pi\}} (\phi^\pi(X_t) - 1) \mathbb{E} [1 - D^\pi_t | G_t] \lambda^\pi(X_t).$$

To ensure absence of arbitrage, the drift $\tilde{\mu}^i_t$ under Q is equal to zero:

$$0 = \mu^i_t + (\sigma^i_t)^{tr} \theta_t - \sum_{\pi \in \Pi_n} \mathbf{1}_{\{i \in \pi\}} (\phi^\pi(X_t) - 1) \mathbb{E} [1 - D^\pi_t | G_t] \lambda^\pi(X_t).$$

This system of linear equations classifies the set of ELMM that we consider. We have n equations (one for each security) and $2^n - 1 + d$ unknowns (corresponding to each source of risk). The market is incomplete, hence the ELMM is not unique.
The Minimal Martingale Measure (1)

Assumption. We assume that the matrix

\[
\left(\sigma_t^i \right)^{\text{tr}} \sigma_t^j + \sum_{\pi \in \Pi_n} 1_{\{i \in \pi\}} 1_{\{j \in \pi\}} \mathbb{E} \left[1 - D_t^\pi \mid G_t \right] \lambda^\pi (X_t) \right]^{1 \leq i \leq n}_{1 \leq j \leq n}
\]

is invertible for all \(t \in [0, T^*]\).

Proposition 7 (Minimal martingale measure). Define the \(n\)-dimensional local martingale \(M^S\)

\[
\left(M_t^S \right)^i = \int_0^t S_s^i \left(\left(\sigma_s^i \right)^{\text{tr}} dW_s - \int_E 1_{\{i \in z\}} (\mu (ds \times dz) - \lambda_s (dz) ds) \right),
\]

and the \(n\)-dimensional predictable process \(\tilde{\lambda}\) as the solution of the linear system

\[
\mu_t^i = \sum_{j=1}^n \tilde{\lambda}_t^j S_t^j \left(\left(\sigma_t^i \right)^{\text{tr}} \sigma_t^j + \sum_{\pi \in \Pi_n} 1_{\{i \in \pi\}} 1_{\{j \in \pi\}} \mathbb{E} \left[1 - D_t^\pi \mid G_t \right] \lambda^\pi (X_t) \right].
\]

Then, the minimal martingale measure is given by the Doléans-Dade exponential \(\mathcal{E} \left(- \int \tilde{\lambda}^{\text{tr}} dM^S \right)_t\).
Proof. The Doob-Meyer decomposition of the price process \(S \) is given by

\[
S_t = S_0 + M_t^S + A_t^S,
\]

\[
(A_t^S)^i = \int_0^t S_{s-}^i \mu_s^i ds,
\]

\[
(M_t^S)^i = \int_0^t S_{s-}^i \left((\sigma_s^i)^{tr} dW_s - \int_E \mathbf{1}_{\{i \in z\}} \left(\mu (ds \times dz) - \lambda_s (dz) ds \right) \right).
\]

The predictable covariance process of \(M \) is

\[
\left\langle M^{S_i}, M^{S_j} \right\rangle = \int_0^t S_{s-}^{i} S_{s-}^{j} \left((\sigma_s^i)^{tr} \sigma_s^j + \int_E \mathbf{1}_{\{i \in z\}} \mathbf{1}_{\{j \in z\}} \lambda_s (dz) \right) ds
\]

The finite variation process \(A_t^S \) can be expressed as

\[
(A_t^S)^i = \left(\int_0^t d \left\langle M^{S_i} \right\rangle_s \hat{\lambda}_s \right)^i = \sum_{j=1}^n \int_0^t \hat{\lambda}_s^j d \left\langle M^{S_i}, M^{S_j} \right\rangle_s,
\]

where the predictable process \(\hat{\lambda} \) is given by inverting the following linear system

\[
\mu_t^i = \sum_{j=1}^n \hat{\lambda}_s^j S_t^j \left[(\sigma_t^i)^{tr} \sigma_t^j + \sum_{\pi \in \Pi_n} \mathbf{1}_{\{i \in \pi\}} \mathbf{1}_{\{j \in \pi\}} \mathbb{E} \left[1 - D_t^\pi |G_t| \lambda^\pi (X_t) \right] \right].
\]
The uniform boundedness in t and ω of the mean-variance trade-off process

$$\tilde{K}_t = \int_0^t (\hat{\lambda}_s)^{tr} \, d\langle M^S \rangle_s \hat{\lambda}_s = \sum_{i,j=1}^n \int_0^t \hat{\lambda}_s^i \hat{\lambda}_s^j \, d\langle M^{iS}, M^{jS} \rangle_s$$

ensures that the minimal martingale measure is given by the Doléans-Dade exponential as shown in Föllmer and Schweizer (1991). \qed
The Minimal Martingale Measure (2)

Signed measure. In general, the minimal martingale measure for discontinuous processes is only a signed measure since
\[E \left(- \int \hat{\lambda}^{tr} dM^S \right) \] can reach negative values. To ensure that \(\hat{P} \) is a true probability measure, we need additional assumptions. We can write the process \((\hat{Z}_t)_{t \geq 0} \) as

\[
\hat{Z}_t = \exp \left(- \int_0^t (\hat{\lambda}_s)^{tr} d\overline{M}_s^S - \frac{1}{2} \int_0^t (\hat{\lambda}_s)^{tr} d\langle \overline{M}^S \rangle_s \hat{\lambda}_s \right) \prod_{s \leq t} \left(1 - (\hat{\lambda}_s)^{tr} \Delta M_s^S \right),
\]

where \(\overline{M}_t^S \triangleq M_t^S - \sum_{s \leq t} \Delta M_s^S \) is the continuous part of the martingale \(M^S \).

The jump part is given by

\[
\sum_{s \leq t} \left(\Delta M_s^S \right)^i = - \int_0^t \int_E S_{s-1}^{i \in Z} \mu (ds \times dz) = - \sum_{T_k \leq t} S_{T_k}^{i \in Z_k},
\]

\[
\prod_{s \leq t} \left(1 - (\hat{\lambda}_s)^{tr} \Delta M_s^S \right) = \prod_{T_k \leq t} \left(1 + \sum_{i=1}^n \hat{\lambda}_{T_k}^{i} S_{T_k}^{i \in Z_k} \right).
\]
The Minimal Martingale Measure (3)

\(\hat{Z}_{T^*} \) is strictly positive if all the factors \(\left(1 + \sum_{i=1}^{n} \hat{\lambda}_{T^*}^i S_{T^*}^i - 1 \{i \in Z_k\} \right) \) are positive.

A useful property of the minimal martingale measure is that if \((\alpha_t)_{t \geq 0}\) is a locally risk-minimizing strategy for the \(T\)-claim \(H_T\), then the value process is given by

\[
V_t(\alpha) = \hat{E}[H_T | \mathcal{G}_t].
\]

Next, we shall work under the minimal martingale measure and all expectations will be taken under this measure. Moreover, the FS decomposition will be done under \(\hat{P}\).

This is similar to the approach taken in Föllmer and Sondermann (1986) where a “good” martingale measure is chosen, then the local risk minimization is done with respect to this measure.
Martingale Representation (1)

The agents' filtration \(\{ G_t \} \) is generated by the Brownian motion \(\tilde{W} \) and the MPP \(\mu (dt \times dz) \) with \((\hat{P}, \{ G_t \}) \)-intensity kernel \(\tilde{\lambda}_t (dz) \).

The martingale generator is \((\tilde{W}, (\mu (dt \times \{ z \}) - \tilde{\lambda}_t (\{ z \}))_{z \in \Pi_n}) \) (see Jacod and Shiryaev (1987) Chap III Corollary 4.31).

Proposition 8 (Martingale representation of \(H_t \)). The \(\{ G_t \} \)-martingale \(H_t = \hat{E} [H_T | G_t] \), \(t \in [0, T^*] \), where \(H_T \) is a \(G_T \)-measurable random variable, integrable with respect to \(\hat{P} \), admits the following integral representation

\[
H_t = H_0 + \int_0^t (\xi_s)^{tr} \, d\tilde{W}_s - \int_0^t \int_E \zeta (s, z) \, (\mu (dt \times dz) - \tilde{\lambda}_s (dz) \, ds),
\]

where \(\xi \) is a \(d \)-dimensional \(\{ G_t \} \)-predictable process and \(\zeta (s, z) \) is an \(E \)-indexed \(\{ G_t \} \)-predictable process \(\zeta (s, z) \) such that

\[
\int_0^t \| \xi_s \|^2 \, ds < \infty, \quad \int_0^t \int_E \zeta (s, z) \, \tilde{\lambda}_s (dz) \, ds < \infty,
\]

almost surely.
Martingale Representation (2)

This can be written as

\[H_t = H_0 + \int_0^t (\xi_s)^{tr} \, d\tilde{W}_s - \sum_{\pi \in \Pi_n} \int_{0}^{t} \zeta(s, \pi) \, d\tilde{M}_s^{\pi}|_{\{G_t\}}, \]

where \(\tilde{M}^{\pi}|_{\{G_t\}} \) is the \(\{G_t\} \)-adapted version of the compensated point process \(\tilde{M}^{\pi} \):

\[\tilde{M}^{\pi}|_{\{G_t\}} \triangleq \mathbb{E} [D_t^{\pi} | G_t] - \int_0^t \mathbb{E} [1 - D_s^{\pi} | G_s] \tilde{\lambda}^{\pi} (X_s) \, ds. \]

In order to replicate the claim \(H_T \), one needs to match the diffusion terms \(\xi_{s}^{i}, \ 1 \leq i \leq d \), and the jump-to-default terms \([-\zeta(s, \pi)] \) for each possible default state.
Computing the Hedging Strategy: Main Result (1)

We use the martingale representation in Proposition 8 to derive the local risk-minimization hedging strategy. As shown in Föllmer and Schweizer (1991), this is equivalent to finding the FS-decomposition

\[H_T = H_0 + \int_{0}^{T} (\alpha_t)^{tr} dS_t + L_t. \]

Our goal is to establish an analytical result, which derives single-name hedges \((\alpha^i)_{1 \leq i \leq n} \) in terms of the martingale representation processes \(\xi \) and \(\zeta (., \pi), \pi \in \Pi_n \).
The strategy \((\alpha_t)_{t \geq 0}\) can be computed as

\[
\alpha_t = d \langle M^S \rangle_t^{-1} d \langle M^S, V(\alpha) \rangle_t,
\]

where the value process is given by

\[
V_t(\alpha) = \hat{\mathbb{E}}[H_T | G_t], \text{ for } t \in [0, T].
\]

This follows from the FS-decomposition of \(H\) under \(\hat{P}\) and the projection of \(V_t(\alpha)\) on the \(\hat{P}\)-martingale \(\int_{0}^{t} (\alpha_s)^{tr} dS_s\).

Theorem 9 *(Local risk-minimization hedging strategy)*. The local risk-minimization hedging strategy of a general (basket) contingent claim with single name instruments is given by the solution of the following linear system,

for \(1 \leq k \leq n\),

\[
\sum_{i=1}^{n} \alpha_t^i \left[S_{t^-}^i S_{t^-}^k \left[\left(\sigma_t^i \right)^{tr} \sigma_t^k + \int_E 1_{i \in z} 1_{k \in z} \tilde{\lambda}_t (dz) \right] \right] = S_{t^-}^k \left(\sigma_t^k \right)^{tr} \xi_t + \int_E \zeta(t, z) S_{t^-}^k 1_{k \in z} \tilde{\lambda}_t (dz).
\]
Proof. M^S is defined as
\[
(M^S_t)^i = \int_0^t S^i_s\left((\sigma^i_s)^{tr} d\tilde{W}_s - \int_E 1\{i \in z\} (\mu (ds \times dz) - \tilde{\lambda}_s (dz) ds) \right),
\]
and the predictable covariance is
\[
d\langle M^S \rangle_{i,j}^t = d\langle M^S_i, M^S_j \rangle^t_t = S^i_t S^j_t - \int_0^t \int_E \zeta (s, z) \left(\mu (ds \times dz) - \tilde{\lambda}_s (dz) ds \right) dt.
\]
The value process $V_t (\alpha) = \hat{\mathbb{E}} [H_T | G_t]$ is given by the martingale representation
\[
V_t (\alpha) = \hat{\mathbb{E}} [H_T | G_t] = H_0 + \int_0^t (\xi_s)^{tr} d\tilde{W}_s - \int_0^t \int_E \zeta (s, z) \left(\mu (ds \times dz) - \tilde{\lambda}_s (dz) ds \right).
\]
Hence, we have
\[
d\langle M^S, V (\alpha) \rangle^t = S^i_t \left((\sigma^i_t)^{tr} \xi_t + \int_E 1\{i \in z\} \zeta (t, z) \tilde{\lambda}_t (dz) \right) dt.
\]
Computing the Hedging Strategy: Main Result (3)

This can be written explicitly in terms of the model parameters.

Applying Itô’s lemma and using the Markovian property of \(X \), we find an explicit expression of the dynamics of \(S^i \) under the martingale measure \(\hat{P} \).

Lemma 10 (Single-name price process representation). We have

\[
S^i_t = S^i_0 - \int_0^t \int_E \tilde{s}^i(s, X_s) 1_{\{i \in z\}} \left(\mu(ds \times dz) - \tilde{\lambda}_s (dz) ds \right)
+ \int_0^t \left(1 - D^i_s \right) \sum_{j=1}^d \sum_{k=1}^d \frac{\partial \tilde{s}^i(s, X_s)}{\partial x_j} \beta_{jk}(X_s) d\tilde{W}^k_s,
\]

where \(\tilde{s}^i(t, x) : [0, T] \times \mathbb{R}^d \to \mathbb{R} \) is defined as

\[
\tilde{s}^i(t, x) \triangleq \mathbb{E}_{(t, x)} \left[\exp \left(- \int_t^T \tilde{\lambda}^i(X_s) ds \right) \right].
\]
Computing the Hedging Strategy: Main Result (4)

Lemma 10 establishes the martingale representation for the single-name securities whose payoff is $H_T = 1 - D^i_T$:

$$
\zeta^{1-D^i_T}(t, z) = 1_{\{i \in z\}} \bar{s}^i(t, X_t), \text{ for } z \in \Pi_n,
$$

$$
\left(\xi_t^{1-D^i_T}\right)^k = (1 - D^i_t) \sum_{j=1}^d \frac{\partial \bar{s}^i(t, X_t)}{\partial x_j} \beta_{jk}(X_t).
$$

The hedging strategy is solution of

for $1 \leq k \leq n$

$$
\sum_{i=1}^n \alpha^i_t \left[\int_E \zeta^{1-D^i_T}(t, z) \zeta^{1-D^i_T}(t, z) \tilde{\lambda}_t(dz) + \left(\xi_t^{1-D^i_T}\right)^{tr} \xi_t^{1-D^i_T} \right]
$$

$$
= \int_E \zeta(t, z) \zeta^{1-D^i_T}(t, z) \tilde{\lambda}_t(dz) + \left(\xi_t^{1-D^i_T}\right)^{tr} \xi_t.
$$

Note that this problem combines both default risk and spread risk.
Applications (1)

We consider a first-to-default (basket) contingent claim whose payoff is

$$H_T^{(1)} = \prod_{i=1}^{n} (1 - D_T^i).$$

The price of this claim, at time t, is

$$H_t^{(1)} = \hat{E} \left[\prod_{i=1}^{n} (1 - D_T^i) \mid G_t \right].$$

We can show that it can be expressed as

$$H_t^{(1)} = \left[\prod_{i=1}^{n} (1 - D_t^i) \right] \tilde{h}^{(1)} (t, X_t),$$

where the function $\tilde{h}^{(1)} (t, x) : [0, T] \times \mathbb{R}^d \to \mathbb{R}$ is defined as

$$\tilde{h}^{(1)} (t, X_t) = \hat{E}_{(t,x)} \left[\exp \left(- \int_t^T \tilde{\lambda}^{(1)} (s, X_s) ds \right) \right],$$

$$\tilde{\lambda}^{(1)} (t, x) = \sum_{j=1}^{m} \left[1 - \prod_{i=1}^{n} (1 - \tilde{p}^{i,j}) \right] \tilde{\lambda}^{c_j} (X_t).$$
Applications (2)

Using Itô’s lemma and some algebra, we find

\[
dH_t^{(1)} = -\int_E \tilde{h}^{(1)}(t, X_t) \left(\mu \left(dt \times dz \right) - \tilde{\lambda}_t \left(dz \right) dt \right) + \left[\prod_{i=1}^n \left(1 - D_i^t \right) \right] \sum_{j=1}^d \sum_{k=1}^d \frac{\partial \tilde{h}^{(1)}(t, X_t)}{\partial x_j} \beta_{jk}(X_t) d\tilde{W}_k^t.
\]

This gives the processes of the martingale representation

\[
\zeta_{H_t^{(1)}}(t, z) = \tilde{h}^{(1)}(t, X_t), \text{ for all } z \in \Pi_n,
\]

\[
\left(\xi_{t H_t^{(1)}} \right)_k = \left[\prod_{i=1}^n \left(1 - D_i^t \right) \right] \sum_{j=1}^d \frac{\partial \tilde{h}^{(1)}(t, X_t)}{\partial x_j} \beta_{jk}(X_t),
\]

which can be plugged into the linear system of Theorem 9. Inverting the latter gives the single-name hedge ratios of the first-to-default basket claim.
Conclusion

- We have addressed the problem of hedging basket credit derivatives with single-name instruments in a Marshall-Olkin Model.

- We have used the Equivalent Fatal Shock model to derive the Marked Point Process representation.

- This is then used to classify the set of ELMMs and to derive the Minimal Martingale Measure \hat{P}.

- Working under \hat{P}, we have applied a Martingale Representation Theorem to the value process, and established the local risk-minimization hedging strategy.

- We have worked out the First-To-Default example to illustrate our result.

