### Stochastic variational inequalities and applications to the total variation flow pertubed by linear multiplicative noise

**Röckner, M ***(Universität Bielefeld)*

Friday 14 September 2012, 09:50-10:40

Seminar Room 1, Newton Institute

#### Abstract

We extend the approach of variational inequalities (VI) to partial differential equations (PDE) with singular coefficients, to the stochastic case. As a model case we concentrate on the parabolic 1-Laplace equation (a PDE with highly singular diffusivity) on a bounded convex domain in N-dimensional Euclidean space, perturbed by linear multiplicative noise, where the latter is given by a function valued (infinite dimensional) Wiener process. We prove existence and uniqueness of solutions for the corresponding stochastic variational inequality (SVI) in all space dimensions N and for any square-integrable initial condition, thus obtaining a stochastic version of the (minimal) total variation flow. One main tool to achieve this, is to transform the SVI and its approximating stochastic PDE into a deterministic VI, PDE respectively, with random coefficients, thus gaining sharper spatial regularity results for the solutions. We also prove finite time extinction of solutions with positive probability in up to N = 3 space dimensions.

#### Presentation

#### Video

**The video for this talk should appear here if JavaScript is enabled.**

If it doesn't, something may have gone wrong with our embedded player.

We'll get it fixed as soon as possible.

## Comments

Start the discussion!