The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content



Does the stochastic parabolicity condition depend on p?

Veraar, M (Delft University of Technology)
Wednesday 12 September 2012, 11:10-12:00

Seminar Room 1, Newton Institute


It is well-known that the variational approach to stochastic evolution equations leads to a L^2(\Omega;H)-theory. One of the conditions in this theory is usually referred to as the stochastic parabolicity condition. In this talk we present an L^p(\Omega;H)-wellposedness result for equations of the form d u + A u dt = B u d W, where A is a positive self-adjoint operator and B:D(A^{1/2})\to H is a certain given linear operator. Surprisingly, the condition for well-posedness depends on the integrability parameter p\in (1, \infty). In the special case that p=2 the condition reduces to the classical stochastic parabolicity condition. An example which shows the sharpness of the well-posedness condition will be discussed as well.

The talk is based on joint work with Zdzislaw Brzezniak.


[pdf ]


The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧