The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content



Large AdS black holes from fluid dynamics

Minwalla, S (Tata Institute)
Wednesday 29 August 2007, 11:00-12:30

Seminar Room 1, Newton Institute


We use the AdS/CFT correspondence to argue that large rotating black holes in global AdS(D) spaces are dual to stationary solutions of the relativistic Navier-Stokes equations on S**(D-2). Reading off the equation of state of this fluid from the thermodynamics of non-rotating black holes, we proceed to construct the nonlinear spinning solutions of fluid mechanics that are dual to rotating black holes. In all known examples, the thermodynamics and the local stress tensor of our solutions are in precise agreement with the thermodynamics and boundary stress tensor of the spinning black holes. Our fluid dynamical description applies to large non-extremal black holes as well as a class of large non-supersymmetric extremal black holes, but is never valid for supersymmetric black holes. Our results yield predictions for the thermodynamics of all large black holes in all theories of gravity on AdS spaces, for example, string theory on AdS(5) x S**5$ and M theory on AdS(4) x S**7 and AdS(7) x S**4

Back to top ∧