The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content

SAS

Seminar

Prefix and plain Kolmogorov complexity characterizations of 2-randomness: simple proofs

Bauwens, B (Universidade do Porto)
Tuesday 03 July 2012, 17:00-17:30

Seminar Room 1, Newton Institute

Abstract

Joseph Miller[1] and independently Andre Nies, Frank Stephan and Sebastian Terwijn[2] gave a complexity characterization of $2$-random sequences in terms of plain Kolmogorov complexity $C\,(\cdot)$: they are sequences that have infinitely many initial segments with $O(1)$-maximal plain complexity (among the strings of the same length).

Later Miller[3] (see also [4]) showed that prefix complexity $K\,(\cdot)$ can be also used in a similar way: a sequence is $2$-random if and only if it has infinitely many initial segments with $O(1)$-maximal prefix complexity (which is $n+K\,(n)$ for strings of length~$n$).

The known proofs of these results are quite involved; we provide simple direct proofs for both of them.

In [1] Miller also gave a quantitative version of the first result: the $0'$-randomness deficiency of a sequence $\omega$ equals $\liminf_n [n - C\,(\omega_1\dots\omega_n)] + O(1)$. (Our simplified proof also can be used to prove this quantitative version.) We show (and this seems to be a new result) that a similar quantitative result is true also for prefix complexity: $0'$-randomness deficiency $d^{0'}(\omega)$ equals also $\liminf_n [n + K\,(n) - K\,(\omega_1\dots\omega_n)]+ O(1)$. This completes the picture: \begin{eqnarray*} d^{0'}(\omega) &=& \sup_n \, \left[ n - K\,^{0'}(\omega_1\dots\omega_n) \right] + O(1) \\ &=& \liminf_n \, \left[ n - C\,(\omega_1\dots\omega_n) \right] + O(1) \\ &=& \liminf_n \, \left[ n + K\,(n) - K\,(\omega_1\dots\omega_n) \right] + O(1) \,. \end{eqnarray*}

[1] J.S. Miller. "Every 2-random real is Kolmogorov random." Journal of Symbolic Logic, 69(3):907–913, 2004.

[2] A. Nies, F. Stephan, and S.A. Terwijn. "Randomness, relativization and turing degrees." The Journal of Symbolic Logic, 70(2), 2005.

[3] J.S. Miller. "The K-degrees, low for K-degrees, and weakly low for K sets." Notre Dame Journal of Formal Logic, 50(4):381–391, 2009.

[4] R.G. Downey and D.R. Hirschfeldt. "Algorithmic Randomness and Complexity." Theory and Applications of Computability. Springer, 2010.

Presentation

[pdf ]

Video

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧