The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content



Computably enumerable partial orders

Cholak, P (University of Notre Dame)
Tuesday 03 July 2012, 10:00-10:30

Seminar Room 1, Newton Institute


We study the degree spectra and reverse-mathematical applications of computably enumerable and co-computably enumerable partial orders. We formulate versions of the chain/antichain principle and ascending/descending sequence principle for such orders, and show that the latter is strictly stronger than the latter. We then show that every $\emptyset'$-computable structure (or even just of c.e. degree) has the same degree spectrum as some computably enumerable (co-c.e.) partial order, and hence that there is a c.e. (co-c.e.) partial order with spectrum equal to the set of nonzero degrees.

A copy of the submitted paper can be found at


[pdf ]


The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧