# SAS

## Seminar

### Nonstandard Analysis: a new way to compute

Seminar Room 1, Newton Institute

#### Abstract

Constructive Analysis was introduced by Errett Bishop to identify the `computational meaning' of mathematics. Bishop redeveloped mathematics, in the spirit of intuitionistic mathematics, based on primitive notions like*algorithm*,

*explicit computation*, and

*finite procedure*. The exact meaning of these vague terms was left open, to ensure the compatibility of Constructive Analysis with several traditions in mathematics. Constructive Reverse Mathematics (CRM) is a spin-off from Harvey Friedman's famous

*Reverse Mathematics*program, based on Constructive Analysis.

In this talk, we introduce `$\Omega$-invariance': a simple and elegant
definition of *finite procedure* in (classical) Nonstandard Analysis.
We show that $\Omega$-invariance captures Bishop's notion of algorithm
quite well. In particular, using an intuitive interpretation based
on $\Omega$-invariance, we obtain many results from CRM *inside*
Nonstandard Analysis. Similar results for Computability (aka Recursion)
Theory are also discussed.

This research is made possible through the generous support of a
grant from the John Templeton Foundation for the project
*Philosophical Frontiers in Reverse Mathematics*. Please note
that the opinions expressed in this publication are those of the
author and do not necessarily reflect the views of the John
Templeton Foundation.

#### Video

**The video for this talk should appear here if JavaScript is enabled.**

If it doesn't, something may have gone wrong with our embedded player.

We'll get it fixed as soon as possible.

If it doesn't, something may have gone wrong with our embedded player.

We'll get it fixed as soon as possible.