The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content



Fragments of approximate counting

Thapen, N (Academy of Sciences of the Czech Republic)
Friday 30 March 2012, 09:00-10:00

Seminar Room 1, Newton Institute


We pose the question: are there any simple sentences, provable using bounded induction, that cannot already be proved using approximate counting of simple sets? More precisely, we study the long-standing open problem of giving $\forall \Sigma^b_1$ separations for fragments of bounded arithmetic in the relativized setting, but rather than considering the usual fragments defined by the amount of induction they allow, we study Jerabek's theories for approximate counting and their subtheories. We prove separations for some of the subtheories, and also give new propositional translations, in terms of random resolution refutations, for the consequences of $T^1_2$ augmented with a certain weak pigeonhole principle. Joint work with Sam Buss and Leszek Kolodziejczyk.


The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧