The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content

RMA Seminar List

for period 26 January to 16 July 2004

Thursday 29 January
15:00-16:00 Stoltz, M (Tuebingen)
  Random matrices and invariant theory Sem 1
16:30-17:30 Strombergsson, A (Uppsala)
  Small solutions to linear congruences and Hecke equidistribution Sem 1
Thursday 05 February
15:00-16:00 Watkins, M (Pennsylvania State)
  Solving systems of polynomial equations via multidimensional p-adic Newton iteration Sem 1
16:30-17:30 Hughes, C (AIM)
  Moments of the Riemann Zeta function and random matrix theory "theory" Sem 1
Monday 09 February
11:00-11:45 Birch, B, Swinnerton-Dyer, P (Oxford, Cambridge)
  The origins of the Birch/Swinnerton-Dyer conjecture: some personal reminiscences Sem 1
12:00-12:45 Silverberg, A (Ohio State)
  Ranks of elliptic curves Sem 1
14:30-15:15 Delaunay, C (Ecole Poly. Federale de Lausanne)
  Heuristics on Class groups and on Tate-Shafarevich groups Sem 1
15:30-16:15 Rubinstein, M (Waterloo, Canada)
  Moments, L-values & Ranks Sem 1
16:45-17:30 David, C (Concordia)
  Vanishing of L-functions of elliptic curves over number fields Sem 1
Tuesday 10 February
09:30-18:00 Snaith, N (Bristol)
  Ranks of elliptic curves & random matrix theory Sem 1
11:15-18:00 Rubin, K (Stanford)
  Constructing rank 2 & rank 3 twists Sem 1
Wednesday 11 February
11:30-18:00 Rubinstein, M (Waterloo, Canada)
  Numerical evidence Sem 1
Friday 13 February
09:00-18:00 Ulmer, D (Arizona)
  Heuristics for large rank Sem 1
10:00-18:00 Watkins, M (Pennsylvania State)
  Numerical evidence Sem 1
14:30-18:00 Hughes, C (AIM)
  Using RMT to predict large values Sem 1
Thursday 19 February
14:30-15:30 Gonek, S (Rochester)
  Mean value theorems and the zeros of the zeta function Sem 1
16:00-17:00 Farmer, D (American Institute of Mathematics)
  Differentiation evens out zero spacings Sem 1
Thursday 26 February
16:00-17:00 Koyama, S
  Multiple zeta functions Sem 1
Thursday 04 March
14:30-15:30 Keating, J (Bristol)
  Negative moments Sem 1
16:00-17:00 Gamburd, A (Stanford)
  Random matrices, magic squares and the Riemann zeta function Sem 1
Thursday 11 March
16:00-17:00 Smolyarenko, I (Cambridge)
  Parametric random matrix theory Sem 1
Thursday 18 March
14:30-15:30 Vaughan, R (Penn State)
  Mean value theorems for primes in arithmetic progressions Sem 2
16:00-17:00 Motohashi, Y (Nihon)
  Feasibility of a unified treatment of mean values of automorphic L-functions Sem 2
Wednesday 24 March
16:00-17:00 Bohigas, O (Orsay)
  Spectral properties of distance matrices Sem 2
Thursday 25 March
16:00-17:00 Fujii, A (Rikkyo University)
  Some problems on the distribution of the zeros of the Riemann zeta function Sem 1
Monday 29 March
10:00-11:00 Heath-Brown, R (Oxford)
  Prime number theory & the Riemann zeta-function I Sem 1
11:30-12:30 Fyodorov, Y (Brunel)
  Gaussian ensembles of random matrices I Sem 1
14:00-15:00 Heath-Brown, R (Oxford)
  Prime number theory \& the Riemann zeta-function II Sem 1
15:30-16:30 Fyodorov, Y (Brunel)
  Gaussian ensembles of random matrices II Sem 1
16:30-17:30 Michel, P (Montpellier II)
  Artin L-functions Sem 1
Tuesday 30 March
09:00-10:00 Heath-Brown, R (Oxford)
  Prime number theory & the Riemann zeta-function III Sem 1
10:00-11:00 Michel, P (Montpellier II)
  Elliptic curves Sem 1
11:30-12:30 Fyodorov, Y (Brunel)
  Gaussian ensembles of random matrices III Sem 1
14:30-15:30 Heath-Brown, R (Oxford)
  Prime number theory & the Riemann zeta-function IV Sem 1
16:00-17:00 Fyodorov, Y (Brunel)
  Gaussian ensembles of random matrices IV Sem 1
17:00-18:00 Goldston, DA (San Jose State)
  Pair correlation of zeros of the Riemann zeta-function and prime numbers I Sem 1
Wednesday 31 March
09:00-10:00 Goldston, DA (San Jose State)
  Pair correlation of zeros of the Riemann zeta-function and prime numbers II Sem 1
10:00-11:00 Bogomolny, EB (Paris Sud)
  Heuristic derivation of the n-point correlation function for the Riemann zeros I Sem 1
11:30-12:30 Michel, P (Montpellier II)
  Modular forms Sem 1
Thursday 01 April
09:00-10:00 Heath-Brown, R (Oxford)
  Prime number theory \& the Riemann zeta-function V Sem 1
10:00-11:00 Goldston, DA (San Jose State)
  Pair correlation of zeros of the Riemann zeta-function and prime numbers III Sem 1
11:30-12:30 Fyodorov, Y (Brunel)
  Gaussian ensembles of random matrices V Sem 1
14:00-15:00 Bogomolny, EB (Paris Sud)
  Heuristic derivation of the n-point correlation function for the Riemann zeros II Sem 1
15:30-16:30 Goldston, DA (San Jose State)
  Pair correlation of zeros of the Riemann zeta-function and prime numbers IV Sem 1
16:30-17:30 Michel, P (Montpellier II)
  L-functions over functions fields Sem 1
Friday 02 April
09:00-10:00 Fyodorov, Y (Brunel)
  Gaussian ensembles of random matrices VI Sem 1
10:00-11:00 Heath-Brown, R (Oxford)
  Prime number theory \& the Riemann zeta-function VI Sem 1
11:30-12:30 Bogomolny, EB (Paris Sud)
  Heuristic derivation of the n-point correlation function for the Riemann zeros III Sem 1
14:00-15:00 Bohigas, OG (Paris Sud)
  Compund nucleus resonances, random matrices, quantum chaos Sem 1
15:30-16:30 Berry, MV (Bristol)
  Quantum chaology and zeta Sem 1
Saturday 03 April
10:00-11:00 Gonek, S (Rochester)
  Mean values & zeros of the zeta function Sem 1
11:30-12:30 Basor, E (California Polytechnic State)
  Toeplitz determinants & connections to random matrices I Sem 1
13:30-14:30 Forrester, P (Melbourne)
  Spacing distributions for random matrix ensembles I Sem 1
Monday 05 April
09:00-10:00 Keating, JP (Bristol)
  RMT moment calculations I Sem 1
10:00-11:00 Conrey, B (AIM)
  Statistics of low-lying zeros of L-function and random matrix theory I Sem 1
11:30-12:30 Farmer, DW (AIM)
  Low moments of the Riemann zeta function Sem 1
14:00-15:00 Keating, JP (Bristol)
  RMT moment calculations II Sem 1
15:30-16:30 Hughes, C (AIM)
  Derivatives of the Riemann zeta function Sem 1
16:30-17:30 Rubinstein, M (Waterloo, Canada)
  Computational methods for L-functions I Sem 1
Tuesday 06 April
09:00-10:00 Basor, E (California Poltechnic State)
  Toeplitz determinants \& connections to random matrices II Sem 1
10:00-11:00 Forrester, P (Melbourne)
  Spacing distributions for random matrix ensembles II Sem 1
11:30-12:30 Conrey, B (AIM)
  Statistics of low-lying zeros of L-function and random matrix theory II Sem 1
14:00-15:00 Rubinstein, M (Waterloo, Canada)
  Computational methods for L-functions II Sem 1
15:30-16:30 Conrey, B (AIM)
  Statistics of low-lying zeros of L-function and random matrix theory III Sem 1
16:30-17:30 Basor, E (California Polytechnic State)
  Toeplitz determinants \& connections to random matrices III Sem 1
Wednesday 07 April
09:00-10:00 Gonek, S (Rochester)
  Mean values of Dirichlet polynomials \& applications Sem 1
10:00-11:00 Conrey, B (AIM)
  Statistics of low-lying zeros of L-function and random matrix theory IV Sem 1
11:30-12:30 Rubinstein, M (Waterloo, Canada)
  Computational methods for L-functions III Sem 1
14:00-15:00 Hughes, C (AIM)
  A new model for the Riemann zeta function Sem 1
15:30-16:30 Forrester, P (Melbourne)
  Spacing distributions for random matrix ensembles III Sem 1
Thursday 08 April
09:00-10:00 Hughes, C (AIM)
  Mock-Gaussian behaviour Sem 1
10:00-11:00 Farmer, DW (AIM)
  Families \& conjectures for moments of L-functions Sem 1
11:30-12:30 Keating, JP (Bristol)
  RMT moment calculations III Sem 1
Thursday 15 April
14:30-15:30 Leboeuf, P (Orsay)
  The partition function p(n) and the many-body density of states Sem 1
16:00-17:00 Forrester, P (Melbourne)
  Applications and generalisations of Fisher-Hartwig asymptotics Sem 1
Thursday 29 April
14:30-15:30 Zirnbauer, M (Koln)
  From random matrices to supermanifolds Sem 2
16:00-17:00 Harnad, J (Montreal)
  Max integrals as isomonodromic tau functi Sem 2
Tuesday 11 May
14:30-15:30 Farahmand, K (Ulster)
  Random polynomials Sem 1
Thursday 13 May
16:00-17:00 Khoruzhenko, B (London)
  Random determinants and eigenvalue distributions in the complex plane Sem 1
Tuesday 18 May
09:00-10:00 Biane, P (ENS Paris)
  Brownian motion in a Weyl chamber and GUE Sem 1
10:00-11:00 Goetze, F (Bielefeld)
  Asymptotic spectral approximations Sem 1
10:30-11:00 Khuruzhenko, B (QMUL)
  Moments of spectral determinants of random complex matrices Sem 1
13:00-14:00 Widom, H (UC Santa Cruz)
  Differencial equations for Dyson processes Sem 1
14:00-15:00 Zirnbauer, M (Koln)
  Granular Bosanization Sem 1
Wednesday 19 May
09:00-10:00 Collins, B (Kyoto)
  Integration over classical compact groups with applications to free probability and matrix integrals Sem 1
10:00-11:00 Zeitouni, O (Minneapolis)
  Central limit theorums for traces - a combinatorial and concentration approach Sem 1
Thursday 20 May
09:00-10:00 Donati-Martin, C (Paris VI)
  Some properties of Wishart processes Sem 1
10:00-11:00 Hudson, R (Nottingham Trent)
  Some noncommutative central limit theorums Sem 1
11:00-12:00 Petz, D (Budapest)
  Free transportation cost inequalities via random matrix approximation Sem 1
12:00-13:00 Stolz, M (Bochum)
  Examples of dual pairs in random matrix theory Sem 1
13:00-14:00 Warren, J (Warwick)
  Dyson's Brownian motion, interlacing and intertwining Sem 1
Friday 21 May
09:00-10:00 Doumerc, Y (Toulouse)
  Exit problems associated with finite reflection groups Sem 1
10:00-11:00 Fyodorov, Y (Brunel)
  Complexity of random energy landscapes, glass transition and absolute value of spectral determinant of random matrices Sem 1
11:00-12:00 Imamura, T (Tokyo)
  Fluctuations of the 1D polynuclear growth model with external sources Sem 1
12:00-13:00 Johansson, K (Stockholm)
  Universality of distributions from random matrix theory Sem 1
13:00-14:00 Reffy, J (Budapest)
  Asymptotics of Haar unitaries and their truncation Sem 1
Thursday 27 May
14:30-15:30 Suhov, Y (Cambridge)
  Anderson localisation for multi-particle lattice systems Sem 1
16:00-17:00 Ozluk, A (Maine)
  Low-lying zeroes of quadratic L-functions Sem 1
Thursday 03 June
14:30-15:30 Perez-Abreu, V (CIMAT)
  Type G ensembles of random matrices Sem 1
16:00-17:00 Duenez, E (Johns Hopkins Univesity)
  Symmetry flipping in families of L-functions Sem 1
Thursday 10 June
16:00-17:00 Pastur, L (Paris)
  On the moments of traces of matrices of classical groups Sem 1
Thursday 17 June
14:30-15:30 Soshnikov, A (UC Davis)
  Poisson statistics for the largest eigenvalues in Wigner and sample covariance random matrices with heavy tails Sem 1
16:00-17:00 Shahshahani, M (Niavaran, Tehran)
  Triangulations of surfaces and distributing points on a sphere Sem 1
Tuesday 22 June
16:00-17:00 Its, A (Indiana)
  Painleve transcendents and random matrices Sem 2
Thursday 24 June
16:00-17:00 Hejhal, D (Minnesota)
  Multi-variate Gaussians for L-functions and applications to zeros Sem 1
Monday 28 June
09:30-10:25 Sarnak, P (Princeton)
  Quantum vesus classical fluctuations on the modular surface Sem 1
11:00-11:40 De Bievre, S (Lille)
  Long time propagation of coherent states under perturbed cat map dynamics Sem 1
11:50-12:30 Mezzadri, F (Bristol)
  Random matrix theory and entanglement in quantum spin chains Sem 1
14:30-15:25 Nonnenmacher, S (CEA Saclay)
  Evolution and constrains on scarring for (perturbed) cat maps Sem 1
16:00-16:40 Hughes, C (AIM)
  On the number of lattice points in a thin annulus Sem 1
16:50-17:30 Anantharaman, N (Lyon)
  The ``Quantum unique ergodicity" problem for anosov geodesic flows: an approach by entropy Sem 1
Tuesday 29 June
09:30-10:25 Sieber, M (Bristol)
  Semiclassical evidence for universal spectral correlations in quantum chaos Sem 1
11:00-11:40 Schubert, R (Bristol)
  Propagation of wavepackets for large times Sem 1
11:50-12:30 Kurlberg, P (Chalmers)
  On the distribution of matrix elements for the quantum cat map Sem 1
14:30-15:25 Venkatesh, A (MIT)
  Quantum chaos on locally symmetric spaces Sem 1
16:00-16:40 Petridis, Y (New York)
  On the remiainder in weyl's law for heisenberg manifolds Sem 1
16:50-17:30 Müller, S (Essen)
  Semiclassical foundation of universality in quantum chaos Sem 1
Wednesday 30 June
09:30-10:25 Eskin, A (Chicago)
  Classical dynamics of billiards in rational polygons Sem 1
11:00-11:40 Degli Esposti, M (Bologna)
  The triangle map: a model for quantum chaos Sem 1
11:50-12:30 Keating, JP (Bristol)
  Eigenfunction statistics for star graphs Sem 1
Thursday 01 July
09:30-10:25 Rudnick, Z (Tel-Aviv)
  A central limit theorem for the spectrum of the modular domain Sem 1
11:00-11:40 Reznikov, A (Bar-IIan Univestity)
  Subconvexity of L-functions and the uniqueness principle Sem 1
11:50-12:30 Jakobson, D (McGill)
  On distribution of zeros of Heine-Stieltjes polynomials Sem 1
14:30-15:25 Zelditch, S (Johns Hopkins)
  Complex zeros of real ergodic eigenfunctions Sem 1
16:00-16:40 Toth, J (McGill)
  Energy asymptotics for gaudin spin chains Sem 1
Friday 02 July
09:30-10:25 Steiner, F (Ulm)
  The cosmic microwave background and the shape of the Universe Sem 1
11:00-11:40 Luo, W (Ohio)
  Zeros of the derivative of a selberg zeta function Sem 1
11:50-12:30 Strombergsson, A (Uppsala)
  Numerical computations with the trace formula and the selberg eigenvalue conjecture Sem 1
14:30-15:25 Zirnbauer, MR (Uni Koeln)
  Granular bosonization (or Fyodorov meets SUSY) Sem 1
16:00-16:40 Koyama, S (Keio)
  The double Riemann zeta function Sem 1
16:50-17:30 Gamburd, A (Stanford)
  Expander graphs, random matrices and quantum chaos Sem 1
Thursday 08 July
14:30-15:30 Granville, A (Montreal)
  Uncertainty principles in arithmetic Sem 1
16:00-17:00 Green, B (Univ of British Columbia)
  Arithmetic progressions of primes Sem 1
Monday 12 July
11:00-11:45 Hughes, C (AIM)
  Mollified \& amplified moments: Some new theorems \& conjectures Sem 1
12:00-12:30 Montgomery, H (Michigan)
  Primes \& pair correlation of zeros Sem 1
14:30-15:00 Ivic, A (Belgrade)
  On the moments of Hecke series at central points Sem 1
15:00-15:30 Jutila, M (Turku)
  The twelth moment of central values of Hecke series Sem 1
16:00-16:45 Diaconis, P (Stanford)
  Testing random matrix theory vs the zeta zeros Sem 1
17:00-17:30 Bump, D (Stanford)
  Automorphic summation formulae and moments of zeta Sem 1
17:30-18:00 Smolyarenko, I (Cambridge)
  Parametric RMT, discrete symmetries, \& cross-correlations between zeros of L-functions Sem 1
Tuesday 13 July
09:30-10:20 Kowalski, E (Bordeaux I)
  A survey of elliptic curves Sem 1
11:00-11:45 Soundararajan, K (Michigan)
  Extreme values \& moments of L-functions Sem 1
12:00-12:30 Booker, A (Paris-Sud)
  Poles of L-functions \& the converse theorem Sem 1
14:30-15:20 Sarnak, P (Princeton)
  Perspectives on L functions and spectral theory Sem 1
16:00-16:45 Keating, J (Bristol)
  Negative moments Sem 1
20:30-18:00 Lenstra Jr., H (Leiden)
  Escher and the Droste effect Sem 1
Wednesday 14 July
09:30-10:20 Ulmer, D (Arizona)
  Introduction to function fields Sem 1
11:00-11:45 Katz, N (Princeton)
  Random matrix theory \& life over finite fields Sem 1
12:00-12:30 Duenez, E (Texas)
  Symmetry beyond root numbers: a GL(6) example (joint with S Miller) Sem 1
Thursday 15 July
09:30-10:20 Rodriguez-Villegas, F (Texas)
  Computing twisted central values of L-functions Sem 1
11:00-11:45 Farmer, D (AIM)
  The geometry of zeros Sem 1
12:00-12:30 Nikeghbali, A (Pierre et Marie Curie)
  Zeros of random polynomials \& linear combinations of random characteristic polynomials Sem 1
14:30-15:20 Rubinstein, M (Waterloo)
  Experiments in number theory \& random matrix theory Sem 1
16:00-16:45 Gonek, S (Rochester)
  A new statistical model of the Riemann zeta function Sem 1
Friday 16 July
09:30-10:20 Gamburd, A (Stanford)
  Applications of symmetric functions theory to random matrices Sem 1
11:00-11:45 Zirnbauer, M (Köln)
  Ratios of random characteristic polynomials from supersymmetry Sem 1
12:00-12:30 David, C (Concordia)
  Vanishing of L-functions of elliptic curves over number fields Sem 1
14:30-15:20 Goldfeld, D (Columbia)
  Multiple Dirichlet series, an historical survey Sem 1
16:00-16:45 Snaith, N (Bristol)
  Ratios of zeta functions \& characteristic polynomials Sem 1
17:00-17:30 Perelli, A (Genova)
  The Selberg class of L-functions: non-linear twists Sem 1
17:30-17:50 Molteni, G (Milan)
  Bounds at s=1 for an axiomatic class of L-functions Sem 1
Other Seminars
Seminars in the University
National and International Scientific Research Meetings

Back to top ∧