The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

An Isaac Newton Institute Workshop

Recent Perspectives in Random Matrix Theory and Number Theory

Prime Number Theory and the Riemann Zeta-Function

Author: D.R. Heath-Brown (Oxford)

Abstract

Lecture 1:-

Unique Factorization Theorem Infinitude of primes Statement of PNT Cramer model Failure of Cramer model

Lecture 2:-

Open questions on primes Recent achievements of prime number theory The Riemann Zeta-function Euler product Analytic continuation and functional equation (via theta function)

Lecture 3:-

Analytic continuation and functional equation (continued) Hadamard product and its logarithmic derivative N(T) and S(T)

Lecture 4:-

N(T) and S(T) (continued) Non-vanishing on the 1-line Proof of PNT

Lecture 5:-

Proof of PNT (continued) Weil type Explicit formulae

Lecture 6:-

Characters Dirichlet L-functions

Pre-requisites:-

Undergrad complex analysis Prpoerties of the gamma function Undergrad algebra (Z is a UFD)

Recommended text:-

Davenport, Multiplicative Number Theory