The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

An Isaac Newton Institute Workshop

Random Matrix Theory and Arithmetic Aspects of Quantum Chaos

Propagation of wavepackets for large times

Author: Roman Schubert (Bristol)


We study the semiclassical propagation of a class of wavepackets for large times on manifolds of negative curvature. The time evolution is generated by the Laplace-Beltrami operator and the wavepackets considered are Lagrangian states. The principal result is that these wavepackets become weakly equidistributed in the joint limit $\hbar\to 0$ and $t\to\infty$ with $t<<|\ln \hbar|$. The main ingredient in the proof is hyperbolicity and mixing of the geodesic flow.