The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content



Computing phylogenetic diversity for split systems

Spillner, A (East Anglia)
Thursday 06 September 2007, 11:50-12:10

Seminar Room 1, Newton Institute


In conservation biology, it is important to measure, predict, and preserve biodiversity as many species are facing extinction. In 1992, Faith proposed measuring the diversity of a collection of species in terms of their relationship on a phylogenetic tree, and using this information to identify collections of species with high diversity. Here we are interested in some variants of the resulting optimisation problem that arise when considering species whose evolution is better represented by a network rather than a tree. More specifically, we consider the problem of computing phylogenetic diversity relative to split systems. We show that for general split systems, this problem is NP-hard. In addition we provide some efficient algorithms for some special classes of split systems, in particular presenting an optimal O(n) time algorithm for phylogenetic trees and an O(n log n + nk) time algorithm for circular split systems.

Keywords: Phylogenetic tree, Phylogenetic network, Phylogenetic diversity, Biodiversity conservation, Split systems


[pdf ]




The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧