The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content



Dissipationless shocks and Painleve equations

Klein, C (Leipzig)
Tuesday 19 September 2006, 11:30-12:00

Seminar Room 1, Newton Institute


The Cauchy problem for dissipationless equations as the Korteweg de Vries (KdV) equation with small dispersion of order $\epsilon^2$, $\epsilon\ll 1$, is characterized by the appearance of a zone of rapid modulated oscillations of wave-length of order $\epsilon$. Near the gradient catastrophe of the dispersionless equation ($\epsilon=0$), a multi-scales expansion gives an asymptotic solution in terms of a fourth order generalization of Painlev\'e I. At the leading edge of the oscillatory zone, a corresponding multi-scales expansion yields an asymptotic description of the oscillations where the envelope is given by a solution to the Painlev\'e II equation. We study the applicability of these approximations for several PDEs and random matrix models numerically.


[pdf ]



Back to top ∧