The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

An Isaac Newton Institute Workshop

Noncommutative Geometry and Cyclic Cohomology

Flat connections and comodules

Author: Tomasz Brzezinski (University of Wales Swansea)


This talk is motivated by a recent paper [A Kaygun and M Khalkhali, Hopf modules and noncommutative differential geometry, Lett. Math. Phys. 76 (2006), 77-91] in which Hopf modules appearing as coefficients in Hopf-cyclic cohomology are interpreted as modules with flat connections.

We start by describing how all the algebraic structure involved in a universal differential calculus fits in a natural way into the notion of a coring (or a coalgebra in the category of bimodules). We recall the theorem of Roiter [A.V. Roiter, Matrix problems and representations of BOCS's. [in:] Lecture Notes in Mathematics, vol. 831, Springer-Verlag, Berlin and New York, 1980, pp. 288-324] in which a bijective correspondence is established between semi-free differential graded algebras and corings with a grouplike element. A brief introduction to the theory of comodules is given and the theorem establishing a bijective correspondence between comodules of a coring with a grouplike element and flat connections (with respect to the associated differential graded algebra) is given [T Brzezinski, Corings with a grouplike element, Banach Center Publ., 61 (2003), 21-35].

Finally we specialise to corings which are built on a tensor product of algebra and a coalgebra. Such corings are in one-to-one correspondence with so-called entwining structures, and their comodules are entwined modules. The latter include all known examples of Hopf-type modules such as Hopf modules, relative Hopf modules, Long dimodules, Doi-Koppinen and alternative Doi-Koppinen modules. In particular they include Yetter-Drinfeld and anti-Yetter-Drinfeld modules and their generalisations, hence all the modules of interest to Hopf-cyclic cohomology. In this way the interpretation of the latter as modules with flat connections is obtained as a corollary of a more general theory.

(We hope to make the talk as accessible to the non-commutative geometry community as possible. In particular we hope to concentrate only on these aspects of the coring and comodule theory which should be of interest and appeal to non-commutative geometers).