# NAG

## Seminar

### Counting local systems with local principal unipotent monodromy

Seminar Room 1, Newton Institute

#### Abstract

We compute, jointly with P. Deligne, the number of equivalence classes of irreducible rank n ell-adic local systems on the geometric X-S, namely n-dimensional ell-adic representations of pi_1(geometrix(X-S)), invariant under the Frobenius, whose local monodromy at each point of S is a single Jordan block of rank n. Here X is a smooth projective absolutely irreducible curve over the finite field of cardinality q, S a finite set of closed points of X of cardinality N>1, ell a prime with (ell,q)=1, and n>1 an integer.#### Video

**The video for this talk should appear here if JavaScript is enabled.**

If it doesn't, something may have gone wrong with our embedded player.

We'll get it fixed as soon as possible.

If it doesn't, something may have gone wrong with our embedded player.

We'll get it fixed as soon as possible.