The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content



Bridgeland stability conditions on threefolds and birational geometry

Bayer, A (Connecticut)
Monday 04 April 2011, 14:00-15:00

Seminar Room 1, Newton Institute


I will explain a conjectural construction of Bridgeland stability conditions on smooth projective threefolds. It is based on a construction of new t-structures. They produce a stability condition if we assume a conjectural Bogomolov-Gieseker type inequality for the Chern character of certain stable complexes. In this talk, I will present evidence for our conjecture, as well as implications of the conjecture to the birational geometry of threefolds. In particular, it implies a weaker version of Fujita's conjecture. This is based on joint work with Aaron Bertram, Emanuele Macrž and Yukinobu Toda.


The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧