The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content

MLC

Seminar

Analysis of defects in minimizers for a planar Frank energy

Phillips, D (Purdue University)
Friday 12 April 2013, 11:30-12:30

Satellite

Abstract

Smectic C* liquid crystal films are modeled with a relaxed Frank energy, \begin{equation*} \int_\Omega\Big( k_s(\text{div}\, u)^2 + k_b(\text{curl}\, u)^2 + \frac{1}{2\epsilon^2}(1 - |u|^2)^2 \Big)\, dx . \end{equation*} Here $k_s$ and $k_b$ represent the two dimensional splay and bend moduli for the film respectively with $k_s, k_b > 0$, $\Omega$ is a planar domain, and $u$ is an $\mathbb{R}^2$-valued vector field with fixed boundary data having degree $d>0$. We study the limiting pattern for a sequence of minimizers $\{u_\epsilon\}$ as $\epsilon\to 0$. We prove that the pattern contains $d$, degree one defects and that it has a either a radial or circular asymptotic form near each defect depending on the relative values of $k_s$ and $k_b$. We further characterize a renormalized energy for the problem and show that it is minimized by the limit. This is joint work with Sean Colbert-Kelly.

Presentation

[pdf ]

Video

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧