The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content



Anomalous fluctuation relations

Klages, R (Queen Mary, University of London)
Wednesday 30 October 2013, 14:50-15:25

Seminar Room 1, Newton Institute


Co-authors: Aleksei V. Chechkin (Institute for Theoretical Physics NSC KIPT, Kharkov, Ukraine), Peter Dieterich (Institut fuer Physiologie, Medizinische Fakultaet Carl Gustav Carus, Dresden, Germany), Friedrich Lenz (Queen Mary University of London, School of Mathematical Sciences, London, UK)

We study Fluctuation Relations (FRs) for Gaussian stochastic systems that are anomalous, in the sense that the diffusive properties strongly deviate from the ones of Brownian motion. For this purpose we use a Langevin approach: We first briefly review the concept of transient work FRs for simple Langevin dynamics generating normal diffusion [1]. We then consider two different types of additive, power law correlated Gaussian noise [2,3]: (1) internal noise with a fluctuation-dissipation relation of the second type (FDR2), and (2) external noise without FDR2. For internal noise we find that FDR2 leads to conventional (normal) forms of transient work FRs. For external noise we obtain various forms of violations of normal FRs, which we call anomalous FRs. We show that our theory is important for understanding experimental results on fluctuations in systems with long-time correlations, such as glassy dynamics [1].

[1] R.Klages, A.V.Chechkin, P.Dieterich, Anomalous fluctuation relations, book chapter in: R.Klages, W.Just, C.Jarzynski (Eds.), Nonequilibrium Statistical Physics of Small Systems, Wiley-VCH, Weinheim (2013) [2] A.V.Chechkin, F.Lenz, R.Klages, J.Stat.Mech. L11001 (2012) [3] A.V.Chechkin, R.Klages, J.Stat.Mech. L03002 (2009)


[pdf ]


The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧