The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content



Adaptive and stochastic algorithms for piecewise constant EIT and DC resistivity problems with many measurements

Asher, U (University of British Columbia)
Tuesday 23 August 2011, 11:45-12:30

Seminar Room 1, Newton Institute


We develop fast numerical methods for the practical solution of the famous EIT and DC-resistivity problems in the presence of discontinuities and potentially many experiments or data.

Based on a Gauss-Newton (GN) approach coupled with preconditioned conjugate gradient (PCG) iterations, we propose two algorithms. One determines adaptively the number of inner PCG iterations required to stably and effectively carry out each GN iteration. The other algorithm, useful especially in the presence of many experiments, employs a randomly chosen subset of experiments at each GN iteration that is controlled using a cross validation approach. Numerical examples demonstrate the efficacy of our algorithms.


The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧