The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content



Turbulent fluid dynamics at the margins of rotational and stratified control

McWilliams, JC (UC, Los Angeles)
Tuesday 09 December 2008, 09:30-10:00

Seminar Room 1, Newton Institute


Geophysical fluid dynamicists have developed a mature perspective on the dynamical influence of Earth's rotation, while most other areas of fluid dynamics can safely disregard rotation. Similarly, geophysical problems usually arise under the influence of stable density stratification at least as importantly as velocity shear. In this talk the dominant turbulence and wave behaviors in the rotating and non-rotating, stratified and non-stratified fluid-dynamical realms are described, and particular attention is given to their borderlands, where rotational and stratified influences are significant but not dominant. Contrary to the inverse energy cascade of geostrophic turbulence toward larger scales, a forward energy cascade develops within the borderlands from the breakdown of diagnostic force balances, frontogenesis, and frontal instabilities, and then it continues further through the small-scale, non-rotating, unstratified (a.k.a. universal) realm until it dissipates at the microscale. In particular, this submesoscale cascade behavior is of interest as a global route to kinetic and available-potential energy dissipations in the oceanic general circulation, as well as an energy source for microscale material mixing across stably-stratified density surfaces.


[pdf ]


The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧