The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content



Computational methods for finding exact solutions of shear flows

Viswanath, D (Michigan)
Thursday 11 September 2008, 10:20-10:40

Seminar Room 1, Newton Institute


Direct numerical solution begins with an initial velocity field and uses the incompressible Navier-Stokes equation to evolve that field forward in time. It has been a huge success and has provided theoretical support for a large number of experiments and natural phenomena. To find steady solutions and traveling waves, one must solve for velocity fields that satisfy certain nonlinear requirements. To find periodic or relative periodic solutions, one must solve for an initial velocity field that evolves in time over a single period to reach a final state that is equal to the initial state modulo certain symmetries. This talk will describe the use of direct numerical solution, Krylov subspace methods, and the hookstep technique from nonlinear optimization to find such solutions.


[pdf ]


The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧