The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content



Two models for infinity-operads

Moerdijk, I (Radboud Universiteit Nijmegen)
Wednesday 03 April 2013, 16:30-17:30

Seminar Room 1, Newton Institute


Following the foundational work of Joyal and Lurie, the theory of infinity-categories is now widely being used. There are two ways of extending the theory to "infinity-operads", one of them [CM] based on the theory of dendroidal sets, the other [HA] on the theory of cocartesian fibrations between infinity-categories, and ever since the appearance of the first versions of [HA] it was conjectured that the two theories are equivalent. In this lecture I will present an outline of a proof of this conjecture [HHM].

[CM] D.-C. Cisinski, I. Moerdijk, Dendroidal sets as models for homotopy operads, Journal of Topology 2011

[HA] J. Lurie, Higher Algebra, book available at

[HMM] G. Heuts, V. Hinich, I. Moerdijk, The equivalence of the dendroidal model and Lurie's model for infinity operads, in preparation.


The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧