The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content



Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces.

Simmons, D (Ohio State University)
Tuesday 24 June 2014, 14:30-15:30

Seminar Room 2, Newton Institute Gatehouse


Let $(X,d)$ be a Gromov hyperbolic metric space, and let $\partial X$ be the Gromov boundary of $X$. Fix a group $G\leq\operatorname{Isom}(X)$ and a point $\xi\in\partial X$. We consider the Diophantine approximation of a point $\eta\in\partial X$ by points in the set $G(\xi)$. Our results generalize the work of many authors, in particular Patterson ('76) who proved most of our results in the case that $G$ is a geometrically finite Fuchsian group of the first kind and $\xi$ is a parabolic fixed point of $G$.


The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧