# DIS

## Seminar

### Discrete Schlesinger Transformations and Difference Painlevé Equations

Seminar Room 1, Newton Institute

#### Abstract

We study a discrete version of isomonodromic deformations of Fuchsian systems, called Schlesinger transformations, and their reductions to discrete Painlevé equations. We obtain an explicit formula for the generating function of elementary Schlesinger transformations in terms of the coordinates on the so-called decomposition space associated to the Fuchsian system and interpret it as a discrete Hamiltonian of our dynamic. We then consider some explicit examples of reductions of such transformations to discrete Painlevé equations. Using the birational geometry of rational surfaces associated to these equations, we compare the form of the equations that correspond to the elementary Schlesinger transformations to standard form of the equations of the same type.#### Video

**The video for this talk should appear here if JavaScript is enabled.**

If it doesn't, something may have gone wrong with our embedded player.

We'll get it fixed as soon as possible.

If it doesn't, something may have gone wrong with our embedded player.

We'll get it fixed as soon as possible.