The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content



Polynomial solutions of differential-difference equations

Dominici, D (State University of New York)
Tuesday 30 June 2009, 14:30-15:00

Seminar Room 1, Newton Institute


We investigate the zeros of polynomial solutions to the differential-difference equation \[ P_{n+1}(x)=A_{n}(x)P_{n}^{\prime}(x)+B_{n}(x)P_{n}(x),~ n=0,1,\dots \] where $A_n$ and $B_n$ are polynomials of degree at most $2$ and $1$ respectively. We address the question of when the zeros are real and simple and whether the zeros of polynomials of adjacent degree are interlacing. Our result holds for general classes of polynomials but includes sequences of classical orthogonal polynomials as well as Euler-Frobenius, Bell and other polynomials.


[pdf ]


The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧