# DIS

## Seminar

### Polynomial solutions of differential-difference equations

Seminar Room 1, Newton Institute

#### Abstract

We investigate the zeros of polynomial solutions to the differential-difference equation \[ P_{n+1}(x)=A_{n}(x)P_{n}^{\prime}(x)+B_{n}(x)P_{n}(x),~ n=0,1,\dots \] where $A_n$ and $B_n$ are polynomials of degree at most $2$ and $1$ respectively. We address the question of when the zeros are real and simple and whether the zeros of polynomials of adjacent degree are interlacing. Our result holds for general classes of polynomials but includes sequences of classical orthogonal polynomials as well as Euler-Frobenius, Bell and other polynomials.#### Video

**The video for this talk should appear here if JavaScript is enabled.**

If it doesn't, something may have gone wrong with our embedded player.

We'll get it fixed as soon as possible.

If it doesn't, something may have gone wrong with our embedded player.

We'll get it fixed as soon as possible.