The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content



Manin matrices and quantum spin models

Falqui, G (SISSA)
Monday 23 March 2009, 15:30-16:30

Meeting Room 3, CMS


We consider a class of matrices with noncommutative entries, first considered by Yu. I. Manin in 1988. They can be defined as ``noncommutative endomorphisms'' of a polynomial algebra. The main aim of the talk is twofold: the first is to show that quite a lot of properties and theorems of linear algebra (e.g., a natural definition of the determinant, the Cayley-Hamilton theorem, and so on and so forth) have a straightforward and natural counterpart in this case. The second, to show how these matrices appear in the theory of integrable quantum spin models, and present a few applications. (Joint work(s) with A. Chervov and V. Rubtsov).


[pdf ]

Back to top ∧