# DAN

## Seminar

### Proving theorems inside sparse random sets

Seminar Room 1, Newton Institute

#### Abstract

In 1996 Kohayakawa, Luczak and Rödl proved that Roth's theorem holds almost surely inside a subset of {1,2,...,n} of density Cn^{-1/2}. That is, if A is such a subset, chosen randomly, then with high probability every subset B of A of size at least c|A| contains an arithmetic progression of length 3. (The constant C depends on c.) It is easy to see that the result fails for sparser sets A. Recently, David Conlon and I found a new proof of this theorem using a very general method. As a consequence we obtained many other results with sharp bounds, thereby solving several open problems. In this talk I shall focus on the case of Roth's theorem, but the generality of the method should be clear from that.#### Video

**The video for this talk should appear here if JavaScript is enabled.**

If it doesn't, something may have gone wrong with our embedded player.

We'll get it fixed as soon as possible.

If it doesn't, something may have gone wrong with our embedded player.

We'll get it fixed as soon as possible.