# CSM

## Seminar

### Log-concave random graphs

Seminar Room 1, Newton Institute

#### Abstract

We propose the following model of a random graph on n vertices. Let F be a multi-dimensional distribution with a coordinate for every pair ij with i,j in [n]. Then G(F,p) is the distribution on graphs with n vertices obtained by picking a random point X from F and defining a graph on n vertices whose edges are pairs ij for which X(i,j) < p. The standard Erdos-Renyi model is the special case when F is uniform on the 0-1 unit cube. We determine some basic properties such as the connectivity threshold for the case where F is down-monotone and has a log-concave density. We also consider cases where the X(i,j) are the edge weights in some random instance of a combinatorial optimization problem. By choosing suitable distributions, we can capture random graphs with interesting properties such as triangle-free random graphs and weighted random graphs with bounded total weight.

## Comments

Start the discussion!