Graph weights arising from Mayer’s theory of cluster integrals

par

Pierre Leroux,
LaCIM et Département de mathématiques,
Université du Québec à Montréal

Séminaire Lotharingien de Combinatoire
Lucelle, 3-6 avril 2005

5 avril 2005

Travail en collaboration avec
Martin Ducharme et Gilbert Labelle

Remerciements à
David Brydges, Frédéric Chapoton, Michael Fisher
Mireille Bousquet-Mélou et Xavier Viennot
In the context of a non-ideal gas with N particles in a vessel V, in a d-dimensional Euclidian space, the following functions are defined:

Partition Function:

$$Z(V, N, T) = \frac{1}{N! \lambda dN} \int_{V^N} \exp \left(-\beta \sum_{i<j} \varphi(|\vec{x}_i - \vec{x}_j|) \right) d\vec{x}_1 \cdots d\vec{x}_N,$$

where λ and β depend on the temperature T and where the interaction between two particles at distance r is expressed by the potential function $\varphi(r)$.

Grand-canonical Distribution:

$$Z_{\text{gr}}(V, T, z) = \sum_{N=0}^{\infty} Z(V, N, T) (\lambda^d z)^N,$$

where the variable z is called the *fugacity* or the *activity*.

Macroscopic Parameters

$$\frac{P}{kT} = \frac{1}{V} \log Z_{\text{gr}}(V, T, z),$$

$$\overline{N} = z \frac{\partial}{\partial z} \log Z_{\text{gr}}(V, T, z),$$

$$\rho := \frac{\overline{N}}{V}, \quad \text{etc.}$$
Mayer’s theory of cluster integrals

In order to study these functions, Mayer (1940) sets

\[1 + f_{ij} = \exp(-\beta \varphi(|\vec{x}_i - \vec{x}_j|)), \]

where \(f_{ij} = f(|\vec{x}_i - \vec{x}_j|) \).

The general form of Mayer’s function

\[f(r) = \exp(-\beta \varphi(r)) - 1, \]

compared to the potential function \(\varphi(r) \), is shown in Figure 1.

![Figure 1: a) the function \(\varphi(r) \)
 b) the function \(f(r) \)](image)
Since

\[\prod_{1 \leq i < j \leq N} (1 + f_{ij}) = \sum_{g \in \mathcal{G}[N]} \prod_{\{i,j\} \in g} f_{ij}, \]

where \(\mathcal{G}[N] \) denotes the set of all (simple) graphs over the set of vertices \([N] = \{1, 2, \ldots, N\}\), the partition function \(Z(V, N, T) \) becomes

\[
Z(V, N, T) = \frac{1}{N! \lambda^{3N}} \int_{V^N} \exp \left(-\beta \sum_{i<j} \varphi(|\vec{x}_i - \vec{x}_j|) \right) d\vec{x}_1 \cdots d\vec{x}_N,
\]

\[
= \frac{1}{N! \lambda^{3N}} \int_{V^N} \prod_{1 \leq i < j \leq N} (1 + f_{ij}) d\vec{x}_1 \cdots d\vec{x}_N
\]

\[
= \frac{1}{N! \lambda^{3N}} \sum_{g \in \mathcal{G}[N]} \int_{V^N} \prod_{\{i,j\} \in g} f_{ij} \ d\vec{x}_1 \cdots d\vec{x}_N
\]

\[
= \frac{1}{N! \lambda^{3N}} \sum_{g \in \mathcal{G}[N]} W(g),
\]

where the weight \(W(g) \) of a graph \(g \) is given by the integral

\[
W(g) = \int_{V^N} \prod_{\{i,j\} \in g} f_{ij} d\vec{x}_1 \cdots d\vec{x}_N.
\]

This is the First Mayer weight of a graph \(g \).
For the grand canonical distribution we then have

\[
Z_{gr}(V, T, z) = \sum_{N=0}^{\infty} Z(V, N, T)(\lambda^3 z)^N
\]

\[
= \sum_{N=0}^{\infty} \frac{1}{N!\lambda^{3N}} \sum_{g \in G[N]} W(g)(\lambda^3 z)^N
\]

\[
= \sum_{N=0}^{\infty} \frac{1}{N!} \sum_{g \in G[N]} W(g)z^N
\]

\[
= G_W(z).
\]

Since the first Mayer weight function \(W\) is multiplicative on connected components, the exponential formula can be used:

\[
G_W(z) = \exp(C_W(z)),
\]

where \(C\) denotes the species (class) of connected graphs, so that

\[
\log G_W(z) = C_W(z)
\]

\[
= \sum_{N=1}^{\infty} \frac{1}{N!} \sum_{c \in C[N]} W(c)z^N
\]

and

\[
\frac{P}{kT} = \frac{1}{V} \log Z_{gr}(V, T, z) = \frac{1}{V} C_W(z).
\]
The Thermodynamic Limit

Let \(c \) be a connected graph over \([N]\).

The Second Mayer weight \(w(c) \) is defined as the limit

\[
 w(c) = \lim_{V \to \infty} \frac{1}{V} W(c)
 = \lim_{V \to \infty} \frac{1}{V} \int_{V^N} \prod_{\{i,j\} \in c} f_{ij} \, d\vec{x}_1 \ldots d\vec{x}_N.
\]

Proposition 1. If the function \(f : [0, \infty) \to \mathbb{R} \) is integrable and bounded and if

\[
 \int_0^\infty r^{d+\epsilon-1} |f(r)| \, dr < \infty,
\]

(for example if \(|f(r)| = O\left(\frac{1}{r^{d+2\epsilon}}\right) \), \(r \to \infty \)), then for any fixed \(\vec{x}_N \in \mathbb{R}^d \), the function \(F_{\vec{x}_N} : \mathbb{R}^{d \cdot (N-1)} \to \mathbb{R} \), defined by

\[
 F_{\vec{x}_N}(\vec{x}_1, \ldots, \vec{x}_{N-1}) = \prod_{\{i,j\} \in c} f(|\vec{x}_i - \vec{x}_j|) = \prod_{\{i,j\} \in c} f_{ij}
\]

is integrable over \((\mathbb{R}^d)^{N-1}\) and its integral is independent of \(\vec{x}_N \). Moreover the above limit \(w(c) \) exists and is equal to

\[
 w(c) = \int_{(\mathbb{R}^d)^{N-1}} \prod_{\{i,j\} \in c; \vec{x}_N=0} f_{ij} \, d\vec{x}_1 \ldots d\vec{x}_{N-1}.
\]
In this Thermodynamic limit, the pressure is given by

\[
\frac{P}{kT} = \lim_{V \to \infty} \frac{1}{V} \log Z_{gr}(V, T, z)
\]

\[
= \lim_{V \to \infty} \frac{1}{V} C_W(z)
\]

\[
= \sum_{N=1}^{\infty} \frac{1}{N!} \sum_{c \in \mathcal{C}[N]} \lim_{V \to \infty} \frac{1}{V} W(c) z^N
\]

\[
= \sum_{N=1}^{\infty} \frac{1}{N!} \sum_{c \in \mathcal{C}[N]} w(c) z^N
\]

\[
= C_w(z).
\]

Proposition 2. The weight function

\[
w(c) = \int_{(\mathbb{R}^d)^{N-1}} \prod_{\{i,j\} \in c; \: \vec{x}_{N} = \vec{0}} f_{ij} \, d\vec{x}_1 \ldots d\vec{x}_{N-1}
\]

is multiplicative with respect to 2-connected components.

See Figure 2
Figure 2: A connected graph with blocks b_1, b_2, b_3, b_4

For example, for the graph c shown in Figure 2, we have

$$w(c)$$

$$= \int_{\mathbb{R}^{d-7}} f_{12}f_{13}f_{23}f_{34}f_{56}f_{37}f_{36}f_{67}f_{68}f_{78} \, d\vec{x}_1d\vec{x}_2 \cdots d\vec{x}_7$$

$$= \int f_{12}f_{13}f_{23}d\vec{x}_1d\vec{x}_2 \, f_{34}d\vec{x}_4 \, f_{56}d\vec{x}_5 \, f_{37}f_{36}f_{67}f_{68}f_{78} \, d\vec{x}_3d\vec{x}_6d\vec{x}_7$$

$$= w(b_1)w(b_2)w(b_3)w(b_4).$$

Corollary. Let \mathcal{B} denote the species of 2-connected graphs. Then

$$\mathcal{C}^\bullet_w(z) = z \exp(\mathcal{B}_w'(\mathcal{C}^\bullet_w(z))),$$

where $\mathcal{C}^\bullet_w(z) = z \frac{d}{dz} \mathcal{C}_w(\bar{z})$.

8
Proof. As Figure 3 shows, we have the isomorphism of species

\[C' = E(B'(C^\bullet)). \]

Since \(C^\bullet = X \cdot C' \), multiplication by X gives

\[C^\bullet = X E(B'(C^\bullet)). \]

The fact that \(w \) is multiplicative over 2-connected components implies that the above relation will carry over to the weighted generating functions, i.e.

\[C_w^\bullet(x) = x \exp(B'_w(C_w^\bullet(x))). \]

Figure 3: \(C' = E(B'(C^\bullet)) \)
An example: the Gaussian Model.

Let
\[f(r) = -\exp(-\alpha r^2), \quad \alpha > 0, \]
which corresponds to a soft repulsive potential, at constant temperature. In this case, all cluster integrals can be explicitly computed (see Uhlenbeck and Ford, 1963): In dimension \(d \), the weight \(w(c) \) of a connected graph \(c \) with \(N \) vertices, has value
\[
w(c) = (-1)^{e(c)} \left(\frac{\pi}{\alpha} \right)^{\frac{d}{2}(N-1)} \gamma(c)^{-\frac{d}{2}},
\]
where \(e(c) \) is the number of edges of \(c \) and \(\gamma(c) \) is the graph complexity of \(c \), that is, the number of spanning subtrees of \(c \).
The hard-core continuum gas in one dimension.

Consider N hard particles of diameter 1 on a line segment, of the form $[-D, D]$.

The hard core constraint translates into the interaction potential $\chi(|x_i - x_j| \geq 1)$ and the Mayer function f_{ij} is defined by

\[
1 + f_{ij} = \chi(|x_i - x_j| \geq 1)
\]

\[
\Leftrightarrow f_{ij} = -\chi(|x_i - x_j| < 1).
\]

The weight function $w(c)$ of a connected graph c is then

\[
w(c) = (-1)^{|E(c)|} \int_{\mathbb{R}^{N-1}} \prod_{\{i,j\} \in c; x_N=0} \chi(|x_i - x_j| < 1) \, dx_1 \ldots dx_{N-1}.
\]

Classical result. The pressure of this system is given by

\[
\frac{P}{kT} = C_w(z) = L(z),
\]

where $L(z)$ is the Lambert function defined by the functional equation $L(z) \exp(L(z)) = z$. In fact, $L(z) = -T(-z)$, where $T(z)$ is the exponential generating function of rooted trees.

In other words, we have

\[
\sum_{c \in \mathcal{C}[N]} w(c) = (-N)^{N-1}.
\]
In other words, we have

\[
\sum_{c \in \mathcal{C}[N]} w(c) = (-N)^{N-1}.
\]

In virtue of the functional equation

\[
\mathcal{C}_w(z) = z \exp(\mathcal{B}'_w(\mathcal{C}_w(z))),
\]

the formula \(\mathcal{C}_w(z) = L(z) \) is equivalent to

\[
\mathcal{B}_w(z) = z \log(1 - z)
\]

or, equivalently,

\[
\sum_{c \in \mathcal{B}[N]} w(c) = -N(N - 2)!.
\]

Question 1. Is there a combinatorial interpretation – proof – of these formulas?

Question 2. Can we compute the individual weights \(w(c) \) of given connected graphs \(c \) and interpret them in terms of other graph invariants?
Observation. Except for the sign, the weight

\[w(c) = (-1)^{|E(c)|} \int_{\mathbb{R}^{N-1}} \prod_{\{i,j\} \in c; x_N=0} \chi(|x_i-x_j| < 1) \, dx_1 \ldots dx_{N-1} \]

can be seen as the volume of a convex polytope \(\mathcal{P}(c) \) in \(\mathbb{R}^{N-1} \) bounded by the constraints \(|x_i - x_j| < 1\), for \(\{i,j\} \in c \), with \(x_N = 0 \). We can compute this volume using Ehrhart polynomials.

Theorem (Ehrhart). Let \(\mathcal{P} \) be a convex polytope of dimension \(d \) in \(\mathbb{R}^m \), with vertices having integer coordinates. Let \(n\mathcal{P} = \{n\alpha : \alpha \in \mathcal{P}\} \) denote the \(n \)-fold expansion of \(\mathcal{P} \), and \(i(\mathcal{P}, n) \), the number of points with integer coordinates which lie inside \(n\mathcal{P} \). Then \(i(\mathcal{P}, n) \) is a polynomial function of \(n \) of degree \(d \) whose leading coefficient is the volume \(\text{Vol}(\mathcal{P}) \) of \(\mathcal{P} \).

Proposition 3. The vertices of \(\mathcal{P}(c) \) have integer coordinates.

Proof. The vertices will occur as intersections of faces defined by equations of the form \(x_i - x_j = 1 \), for \(\{i,j\} \in c \). Now the matrix of such a system will be invertible if and only if the edges of the selected equations form a spanning subtree of \(c \). Since \(x_N = 0 \), each \(x_i \) will be an integer.
Hence the volume of the polytope $\mathcal{P}(c)$ and the weight

$$w(c) = (-1)^{|E(c)|} \text{Vol}(\mathcal{P}(c))$$

can be deduced by computing the Ehrhart polynomial function of $n, i(\mathcal{P}(c), n)$. We have carried out this computation for all 2-connected graphs having N vertices, for $N \leq 6$. The weight of any connected graph c whose blocks have size at most 6 can then be deduced by multiplicativity.

Numerical results.
The numerical results have led us to conjecture and then prove the following two results, for the cycle and the complete graph of size N:

Proposition 4. For the complete graph K_N, we have

$$w(K_N) = (-1)^{\binom{N}{2}}N.$$

Proof (Idea of Frédéric Chapoton). Revert to the original definition of $w(c)$ and use the symmetry of the polytope \mathcal{P}_N in \mathbb{R}^N to compute its volume.

$$w(K_N) = \lim_{D \to \infty} \frac{1}{2D} W(K_N)$$

$$= \lim_{D \to \infty} \frac{1}{2D} (-1)^{\binom{N}{2}} \int_{[-D,D]^N} \prod_{\{i,j\}} \chi(|x_i - x_j| < 1) \, dx_1 \ldots dx_N.$$

Proposition 5. For the (unoriented) cycle C_N with N vertices, we have

$$w(C_N) = \frac{(-1)^N}{(N - 1)!} \sum_{i=0}^{\left\lfloor \frac{N-1}{2} \right\rfloor} (-1)^i \binom{N}{i} (N - 2i)^{N-1}.$$

Proof. Uses the iterated convolution products of the χ function.
References

