2-CONNECTED GRAPHS WITH PRESCRIBED
THREE-CONNECTED COMPONENTS

by

Pierre Leroux,
LaCIM et Département de mathématiques,
Université du Québec à Montréal

Ottawa-Carleton Discrete Mathematics Workshop
Carleton University, Ottawa, May 25–26, 2007

Work in collaboration with
Andrei Gagarin, Gilbert Labelle
and Timothy Walsh

Introduction

Our goal:

1. An analogue of the block-cutpoint tree $bc(g)$ of a connected graph g, for 2-connected graphs

2. Functional equations for 2-connected graphs and networks with prescribed 3-connected components

3. Enumerative consequences and applications

Figure 1: A 2-connected graph
Figure 2: A separating pair

Figure 3: Bond along a separating pair
Figure 4: Separating pairs
Figure 5: Separating pairs and tricomponents

Tricomponents: 3-connected graphs \((A, B,\) and \(C)\) or polygons: \((S, T, U,\) and \(P)\).

Figure 6: tc-tree of a 2-connected graph
Dissymmetry Theorem for 2-connected graphs

Let \mathcal{F} be a given class of 3-connected graphs.

$\mathcal{B} = \mathcal{B}_\mathcal{F}$ denotes the class of 2-connected graphs all of whose 3-connected components are in \mathcal{F}. Note: K_2 is in \mathcal{B}.

We introduce the following classes of *rooted* graphs in \mathcal{B}:

- \mathcal{B}°: with a distinguished tricomponent;
- \mathcal{B}^\bullet: with a distinguished bond;
- $\mathcal{B}^{\circ\bullet}$: with a distinguished pair of adjacent tricomponent and bond.

Theorem. We have the following identity (species isomorphism):

$$\mathcal{B}^\circ + \mathcal{B}^\bullet = \mathcal{B} - K_2 + \mathcal{B}^{\circ\bullet}.$$

Proof. Analyse the relative positions of the rooted tricomponents or bonds with respect to the graph "centers".
2-pole networks

A 2-pole network (or simply a network) is a connected graph \(N \) with two distinguished vertices 0 and 1, such that the graph \(N \cup 01 \) is unseparable.

The vertices 0 and 1 are called the poles of \(N \), and all the other vertices of \(N \) are said to be internal. The internal vertices of a network form its underlying set.

Figure 7: (i) series-parallel network (ii) \((K_4)_{0,1}\) - network

Figure 8: The trivial networks: (i) \(\parallel \) (ii) \(y \parallel \)
For any class of graphs \mathcal{G}, we define an associated class of networks $\mathcal{G}_{0,1}$. A network in $\mathcal{G}_{0,1}$ is obtained from a graph in \mathcal{G} by selecting and removing an edge and relabelling its endpoints with 0 and 1.

For memory, the corresponding exponential generating functions satisfy

$$x^2 \mathcal{G}_{0,1}(x, y) = 2 \frac{\partial}{\partial y} \mathcal{G}(x, y)$$

We define an operator τ acting on 2-pole networks, $N \leftrightarrow \tau \cdot N$, which interchanges the poles 0 and 1. A class \mathcal{N} of networks is called symmetric if $N \in \mathcal{N} \implies \tau \cdot N \in \mathcal{N}$.
The composition $\mathcal{M} \uparrow \mathcal{N}$

Let \mathcal{M} be a class of graphs (or networks) and \mathcal{N} be a symmetric class of networks. We denote by $\mathcal{M} \uparrow \mathcal{N}$ the class of pairs of graphs (or networks) (M, T), such that

1. the graph (or network) M (called the core) is in \mathcal{M},
2. the vertex set $V(M)$ is a subset of $V(T)$,
3. there exists a family $\{N_e\}$ of networks in \mathcal{N} (called the components) such that the graph T can be obtained from M by substituting N_e for each edge e of M, the poles of N_e being identified with the extremities of e.

Figure 10: Example of a $(\mathcal{M} \uparrow \mathcal{N})$-structure (M, T)
Examples of compositions

1. If we take the class $\mathcal{G} = \{K_2\}$ for cores and the class \mathcal{N} of all networks for components, then the $(K_2 \uparrow \mathcal{N})$-structures consist of graphs G together with two selected (adjacent or not) vertices a and b, such that the graph $G \cup ab$ is 2-connected.

2. The composition $\mathcal{M} \uparrow \mathcal{N}$ is called canonical if for any structure $(M, T) \in \mathcal{M} \uparrow \mathcal{N}$, the core $M \in \mathcal{M}$ is uniquely determined by the graph (or network) T. In this case, we can identify $\mathcal{M} \uparrow \mathcal{N}$ with the class of resulting networks T.

For example, we can take $\mathcal{G} = K$, the class of complete graphs, $\mathcal{N} = \mathbb{1} + y\mathbb{1}$, the class of trivial networks, (see Figure 4). Then we have

$$K \uparrow (\mathbb{1} + y\mathbb{1}) = \mathcal{G},$$

where \mathcal{G} denotes the class of all graphs, the composition being canonical.
Let \(\mathcal{F} \) be a given class of 3-connected graphs.

\(\mathcal{B} = \mathcal{B}_{\mathcal{F}} \) denotes the class of 2-connected graphs all of whose 3-connected components are in \(\mathcal{F} \).

\(\mathcal{D} = \mathcal{D}_{\mathcal{F}} \) denotes the class of networks all of whose 3-connected components are in \(\mathcal{F} \).

In fact \(\mathcal{D} = (1 + y)\mathcal{B}_{0,1} - \mathbb{1} \).

Theorem. We have the following identities:

\[
\mathcal{B}^\circ = \mathcal{F} \uparrow \mathcal{D} + \mathcal{C} \uparrow (\mathcal{D} - \mathcal{S})
\]

\[
\mathcal{B}^\bullet = K_2 \uparrow \left((1 + y)E_{\geq 2}(\mathcal{H} + \mathcal{S}) - E_2(\mathcal{S}) \right)
\]

\[
\mathcal{B}^{\circ-\bullet} = K_2 \uparrow \left((1 + y)(\mathcal{H} + \mathcal{S})E_{\geq 1}(\mathcal{H} + \mathcal{S}) - \mathcal{S}^2 \right)
\]

where

\(\mathcal{C} \) is the class of unoriented cycles of length \(\geq 3 \) (polygons),

\(\mathcal{S} \) is the class of (strictly) series networks,

\(\mathcal{H} = \mathcal{F}_{0,1} \uparrow \mathcal{D} \) (irreducible networks).
Theorem. (Trakhtenbrot)

The species of two-pole networks \mathcal{D} corresponding to a species of 3-connected graphs \mathcal{F} can be expressed by the relation

$$\mathcal{D} = (1 + y)E(\mathcal{F}_{0,1} \uparrow \mathcal{D} + \frac{X\mathcal{D}^2}{1 + XD}) - 1.$$

Proof. It follows from the tricomponent decomposition of a 2-connected graph that

$$\mathcal{D} = y1 + (1 + y)(\mathcal{H} + \mathcal{S} + E_{\geq 2}(\mathcal{H} + \mathcal{S}))$$
$$= (1 + y)E(\mathcal{H} + \mathcal{S}) - 1,$$

where

$\mathcal{H} = \mathcal{F}_{0,1} \uparrow \mathcal{D}$ and \mathcal{S} satisfies

$$\mathcal{S} = (\mathcal{D} - \mathcal{S}) \cdot_s \mathcal{D} = (\mathcal{D} - \mathcal{S})XD$$

and hence

$$\mathcal{S} = \frac{X\mathcal{D}^2}{1 + XD}.$$

Corollary. In terms of the exponential generating functions we have

$$\mathcal{D}(x, y) = (1 + y)\exp \left(\mathcal{F}_{0,1}(x, \mathcal{D}(x, y)) + \frac{x\mathcal{D}^2(x, y)}{1 + x\mathcal{D}(x, y)} \right) - 1.$$
References

