The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

Skip to content



Fluid-Gravity Duality at a Cutoff Surface

Keeler, C (Harvard University)
Thursday 01 March 2012, 14:00-15:00

Seminar Room 1, Newton Institute


We show by explicit construction that for every solution of the incompressible Navier-Stokes equation in $p+1$ dimensions, there is a uniquely associated "dual" solution of the vacuum Einstein equations in $p+2$ dimensions. We consider both a "near-horizon" limit in which $\Sigma_c$ becomes highly accelerated, and a long-wavelength hydrodynamic limit. We show that the near-horizon expansion in gravity is mathematically equivalent to the hydrodynamic expansion in fluid dynamics, and the Einstein equation reduces to the incompressible Navier-Stokes equation.


The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.

Back to top ∧