The INI has a new website!

This is a legacy webpage. Please visit the new site to ensure you are seeing up to date information.

An Isaac Newton Institute Workshop

Quantum Graphs, their Spectra and Applications

Spectral correlations of individual quantum graphs

Author: Sven Gnutzmann (Nottingham Univ)

Abstract

The spectral correlations of large well-connected quantum graphs are shown to behave according to the predictions of random-matrix theory by using a supersymmentry method. In a first (generally applicable) step the energy-average over the spectrum of individual graphs can be traded for the functional average over a supersymmetric nonlinear sigma-model action. Reducing the full sigma-model to its mean field theory is equivalent to the random-matrix theory of the Wigner-Dyson ensembles. Conditions for the validity of a mean field description will be discussed along with the stability of the universal random matrix behavior with regard to perturbations.